Uso de productos y subproductos agrícolas en la medicina veterinaria y zootecnia

Palabras clave: Plantas medicinales, residuos de galleta, Pleurotus ostreatus

Resumen

Los productos y subproductos agrícolas han mostrado gran relevancia en las últimas décadas, debido a que lejos de ser considerados desechos y en algunos casos contaminantes, pueden ser utilizados como materia prima o insumos para la generación de productos con valor agregado, o bien, utilizados como alternativas en el tratamiento de enfermedades y en la nutrición animal; estas acciones, por consiguiente, reducen el impacto ambiental de dichos compuestos. El objetivo del presente estudio fue analizar el estado del arte del aprovechamiento biotecnológico de los productos y subproductos agrícolas, para generar una perspectiva que contribuya al desarrollo sostenible del país. Con los resultados obtenidos podemos concluir que existe un potencial viable para utilizar los productos y subproductos agrícolas en las diversas actividades de la medicina veterinaria y la zootecnia.

Descargas

La descarga de datos todavía no está disponible.

Citas

Safwat A, Franco L, Ricalde R, Nieves D. Determination of Tropical Forage Preferences Using Two Offering Methods in Rabbits. Asian-Australasian Journal of Animal Sciences (AJAS) 2014; 27(4):524-529. https://doi.org/10.5713/ajas.2013.13163

Liu M, Goonewardene L, Bailey D, Basarab J, Kemp R, Okine A, Makarechian M. A study on the variation of feed efficiency in station tested beef bulls. Canadian Journal of Animal Science 2000; 80:435–441.

Baek Y, Kim M, Reddy K, Oh Y, Jung Y, Yeo J, Choi H. Rumen fermentation and digestibility of spent mushroom (Pleurotus ostreatus) substrate inoculated with Lactobacillus brevis for Hanwoo steers. Revista Colombiana de Ciencias Pecuarias 2017; 30(4):267-277.

Zihare L, Spalvins K, Blumberga D. Multi criteria analysis for products derived from agro-industrial by-products. Energy Procedia 2018; 147:452–457. https://doi.org/10.1016/j.egypro.2018.07.045

Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing 2018; 5(1):1. https://doi.org/10.1186/s40643-017-0187-z

Mejías-Brizuela N, Orozco-Guillen E, Galáan-Hernández N. Aprovechamiento de los residuos agroindustriales y su contribución al desarrollo sostenible de México. Revista de Ciencias Ambientales y Recursos Naturales 2016 2(6):27-41.

Williams BC, McMullan JT, McCahey S. An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresource Technology 2001; 79(3):227–230. https://doi.org/10.1016/S0960-8524(01)00073-6

Sánchez JE, Mata G. Hongos comestibles y medicinales en iberoamérica: investigación y desarrollo en un entorno multicultural. Revista Mexicana de Micología 2013; 38:35-36.

Escorza-Montoya M, Amador-Larios G, García-Esquivel J, Ayala-Martínez M, Zepeda-Bastida A, Soto-Simental S. Productive performance and meat quality of rabbits that consumed cookie waste. Abanico Vet 2019; 9(1):1-7. http://dx.doi.org/10.21929/abavet2019.910

Martínez GJ, Jiménez-Escobar D. Plants of veterinary interest in the peasant culture of Sierra de Ancasti (Catamarca, Argentina). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 2017; 16 (4):329-346.

Chasquibol NS, Lengua LC, Delmás I, Rivera DC, Bazán D, Aguirre RM, Bravo MA. Alimentos funcionales o fitoquímicos, clasificación e importancia. Rev. Per. Quím. Ing. Quim. 2003; 5(2):9-20.

Kumari P, Kumari C, Singh PS. Phytochemical Screening of Selected Medicinal Plants for Secondary Metabolites. Institute of International Journal of Life Sciences 2017; 3(4):1151–1157. https://doi.org/10.21276/ijlssr.2017.3.4.9

Hamadani A, Ganai NA, Shanaz S, Khan N, Bukhari SS, Iqbal Z, Ayaz A. Usage of phytochemicals in veterinary practice. Journal of Entomology and Zoology Studies 2018; 6(2):1997–2000.

Singh I. Antimicrobials in higher plants: Classification, mode of action and bioactivities. Chemical Biology Letters 2017; 4(1):48–62. http://pubs.iscience.in/cbl

Ju J, Xie Y, Guo Y, Cheng Y, Qian H, Yao W. The inhibitory effect of plant essential oils on foodborne pathogenic bacteria in food. Critical Reviews in Food Science and Nutrition 2019; 59(20):3281-3292. https://doi.org/10.1080/10408398.2018.1488159

Zhang L, Virgous C, Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. Journal of Nutritional Biochemistry 2019; 69:19–30. https://doi.org/10.1016/j.jnutbio.2019.03.009

Chen CY, Kao CL, Liu CM. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. International Journal of Molecular Sciences 2018; 19(9):2729 https://doi.org/10.3390/ijms19092729

Truong DH, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of severinia buxifolia. Journal of Food Quality 2019; vol. 2019, Article ID 8178294, 9 pages. https://doi.org/10.1155/2019/8178294

Liao PC, Lai MH, Hsu KP, Kuo YH, Chen J, Tsai MC, Li CX, Yin XJ, Jeyashoke N, Chao LKP. Identification of β-Sitosterol as in Vitro Anti-Inflammatory Constituent in Moringa oleifera. Journal of Agricultural and Food Chemistry 2018; 66(41):10748–10759. https://doi.org/10.1021/acs.jafc.8b04555

Qubra K, Singh B. Study of In vitro Anti-inflammatory Property of Dendrocnide sinuata (Blume) Chew and Chenopodium ambrosioides (L.): Ethnomedicinal Plants from Assam. Trends in Pharmaceutical Research and Development 2020; 2(2):139–144. https://doi.org/10.9734/bpi/tprd/v2

Son-de Fernex E, Alonso-Díaz MA, Mendoza-de Gives P, Valles-de la Mora B, González-Cortaza, M, Zamilpa A, Castillo Gallegos E. Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Veterinary Parasitology 2015; 214(1–2):89-95. https://doi.org/10.1016/j.vetpar.2015.10.005

Dalle-Zotte A, Celia C, Szendro Z. Herbs and spices inclusion as feedstuff or additive in growing rabbit diets and as additive in rabbit meat: A review. Livestock Science 2016; 189:82–90. https://doi.org/10.1016/j.livsci.2016.04.024

Ocampo-López J, García-Vázquez LM, Ayala-Martínez M, Soto-Simental S, Zepeda-Bastida A. Effects of Zingiber officinale as a feed additive on productive parameters, carcass quality and meat quality in growing rabbits. R. Bras. Zootec. 2022; 51:e20200203. https://doi.org/10.37496/rbz5120200203

García-Vázquez LM, Ayala-Martínez M, Soto-Simental S, Ocampo-López J, Zepeda-Bastida A. Effects of spearmint (Mentha spicata L.) infusion in drinking water during rabbit fattening on the microbial and physicochemical qualities of the end meat product. International Food Research Journal 2021; 28(3):594-602.

Mendoza-Ramírez N, Ayala-Martínez M, Soto-Simental S, Zepeda-Bastida A, Ocampo-López J, García-Vázquez LM. Tithonia tubaeformis forage with medicinal properties, an alternative for animal feed. Boletín de Ciencias Agropecuarias del ICAP 2021; 7(13):1-3. https://repository.uaeh.edu.mx/revistas/index.php/icap/article/view/5999/7834

Zepeda-Bastida A, Ayala-Martinez M, Soto-Simental S. Carcass and meat quality of rabbits fed Tithonia tubaeformis weed. R. Bras. Zootec 2019; 48:e20190074:1-10. https://doi.org/10.1590/rbz4820190074.

Ayala-Martinez M, Zepeda-Bastida A, Soto-Simental S. Dietary supplementation effects with Ruta graveolens on performance, carcass traits and meat quality on rabbits. Revista Mexicana de Ciencias Pecuarias 2020; 11(4):1220-1230. https://doi.org/10.22319/rmcp.v11i4.5460

García-Vázquez LM, Zepeda-Bastida A, Ayala-Martinez M, Soto-Simental S. Infusion of Chenopodium ambrosioides consumed by rabbits: effects on carcass, meat and burger quality. Food Science and Technology 2020; 40(Suppl 2):451-457. https://doi.org/10.1590/fst.32819

García-Valencia S, Zepeda-Bastida A, Ocampo-López J, Ayala-Martínez M, Suárez-Islas A, Soto-Simental S. Dalbergia palo-escrito, a natural alternative to preserve rabbit meat. Boletín de Ciencias Agropecuarias del ICAP 2020; 6(11):1-4. https://doi.org/10.29057/icap.v6i11

García-Valencia S, Soto-Simental S, Ocampo-López J, Zepeda-Bastida A, Ayala-Martínez M. Effect of inclusion of extract Dalbergia palo-escrito on productive parameters of rabbits fat. Revista Mexicana de Agroecosistemas 2019; 6(Suplemento 2):1099-1105.

Coreno-Hernández JO, Zepeda-Bastida A, Soto-Simental S, Ayala-Martínez M, Ojeda-Ramírez DEffect of the consumption of “palo escrito” (Dalbergia palo-escrito sp), alfalfa and corn in multinutritional blocks on the quality of carcass and rabbit meat. Abanico Vet 2018; 8(1):75-79. http://dx.doi.org/10.21929/abavet2018.81.7

Hernández-Fuentes AD, Soto-Simental S, Zepeda-Bastida A, Ocampo-López J, Ayala-Martínez M. 2020. Productive performance, carcass traits, meat quality and blood profile in rabbits fed with Moringa oleifera. En: “Zootecnia: Nutrição e Produção Animal”, Carlos Alexandre Oelke (Eds). Primera edición, Editoral Científica Digital, Sao Paulo Brasil. pp. 270-281. 10.37885/978-65-87196-42-8.

Caro Y, Bôa-Viagem C, Ferreira WM, Bustamante D, Ly J, Mireles S. In vivo digestibility of nutrients and energy of moringa (Moringa oleifera ecotype Pernambuco) forage meal, for growing-fattening rabbits. Cuban Journal of Agricultural Science 2020; 54(3):405-412. https://orcid.org/0000-0002-7973-6349

Aquino-López JL, Chávez-Martínez A, García-Macías JA, Méndez-Zamora G, Rentería-Monterrubio AL, Dalle-Zotte A, García-Flores LR. Essential oil and bagasse of oregano (Lippia berlandieri Schauer) affect the productive performance and the quality of rabbit meat. Revista Mexicana de Ciencias Pecuarias 2020; 11(3):701–717. https://doi.org/10.22319/RMCP.V11I3.5420

Ajuogu PK, Mgbere OO, Bila DS, McFarlane JR. Hormonal changes, semen quality and variance in reproductive activity outcomes of post pubertal rabbits fed Moringa oleifera Lam. leaf powder. Journal of Ethnopharmacology 2019; 233:80–86. https://doi.org/10.1016/j.jep.2018.12.036

Attia YA, Hamed RS, Bovera F, Abd El-Hamid AEHE, Al-Harth MA, Shahba HA. Semen quality, antioxidant status and reproductive performance of rabbits bucks fed milk thistle seeds and rosemary leaves. Animal Reproduction Science 2017; 184:178–186. https://doi.org/10.1016/j.anireprosci.2017.07.014

Onuoha FC, Achebe O, Vincent O. Effect of Hibiscus sabdariffa L. on circulating levels of reproductive hormones in rabbits (Oryctolagus cuniculus). Advances in Food Science and Technology 2015; 3(9):1-11.

Kandeil MA, Mohamed AEH, Abdel Gabba M, Ahmed RR, Ali SM. Ameliorative effects of oral ginger and/or thyme aqueous extracts on productive and reproductive performance of V-line male rabbits. Journal of Animal Physiology and Animal Nutrition 2019; 103(5):1437–1446. https://doi.org/10.1111/jpn.13147

Petrič D, Mravčáková D, Kucková K, Čobanová K, Kišidayová S, Cieslak A, Ślusarczyk S, Váradyová Z. Effect of dry medicinal plants (wormwood, chamomile, fumitory and mallow) on in vitro ruminal antioxidant capacity and fermentation patterns of sheep. Journal of Animal Physiology and Animal Nutrition 2020; 104(5):1219–1232. https://doi.org/10.1111/jpn.13349

Bhatt RS, Sahoo A, Kumar Soni L, Sharma P. Methane emission, nutrient utilization, microbial protein synthesis and growth performance in finisher lambs fed complete feed blocks containing phytochemical-rich forages of semi-arid region. Carbon Management 2020; 11(2):97–107. https://doi.org/10.1080/17583004.2019.1706143

Aderao GN, Sahoo A, Bhatt RS, Kumawat PK, Soni L. In vitro rumen fermentation kinetics, metabolite production, methane and substrate degradability of polyphenol rich plant leaves and their component complete feed blocks. Journal of Animal Science and Technology 2018; 60(1):1-9. https://doi.org/10.1186/s40781-018-0184-6.

Rosales-Nieto CA, Rodríguez-Aguilar M, Santiago-Hernandez F, Cuevas-Reyes V, Flores-Najera MJ, Vázquez-García JM, Urrutia-Morales J, Ghaffari MH, Meza-Herrera CA, González-Bulnes A, Martin GB. Periconceptional nutrition with spineless cactus (Opuntia ficus-indica) improves metabolomic profiles and pregnancy outcomes in sheep. Scientific Reports 2021; 11(1):7214. https://doi.org/10.1038/s41598-021-86653-w

Alenezy ES, Barakat IAH, Al Musayeib NM. Effect of Wild Marjoram Origanum vulgare Plant Extracts on Capacitation of Sheep Spermatozoa in Vitro. Advances in Bioscience and Biotechnology 2019; 10(04):82–97. https://doi.org/10.4236/abb.2019.104006

Amorim SL, de Oliveira ACP, Peixoto RM, Bastos LS, Silva WW, Athayde ACR. Anthelmintic activity of the ethanol extract of the Uncaria guianensis (Rubiaceae) on eggs and larvae of gastrointestinal nematodes of sheep in the Western Amazon Region. Acta Veterinaria Brasilica 2021; 15(1):66–74. https://doi.org/10.21708/avb.2021.15.1.9662

Piza MLST, Féboli A, Augusto JG, Anjos LA, Laurentiz AC, Royo VA, Alvarenga FQ, Laurentiz RS. In vitro ovicidal and larvicidal activity of Psidium cattleianum Sabine leaves against gastrointestinal nematodes of naturally infected sheep. Boletim de Indústria Animal 2019; 76:1–8. https://doi.org/10.17523/bia.2019.v76.e1450

Wahyuni S, Sunarso S, Prasetiyono BWHE, Satrija F. Exploration of anthelmintic activity of Cassia spp. extracts on gastrointestinal nematodes of sheep. Journal of Advanced Veterinary and Animal Research 2019; 6(2):236–240. https://doi.org/10.5455/javar.2019.f338

Tianhoun DF, Meda NTR, Konate A, Kabore A, Tamboura HH, Belem AMG. Phytochemical Screening and In vitro Anthelmintic Activity of Cassia alata (L) Roxb. on Haemonchus contortus of Small Ruminants in Burkina Faso. The Journal of Advances in Parasitology 2020; 7(3):14–19. https://doi.org/10.32388/361986

Olmedo-Juárez A, Zarza-Albarran MA, Rojo-Rubio R, Zamilpa A, González-Cortazar M, Mondragón-Ancelmo J, Rivero-Pérez N, Mendoza-de Gives P. Acacia farnesiana pods (plant: Fabaceae) possesses anti-parasitic compounds against Haemonchus contortus in female lambs. Experimental Parasitology 2020; 218:107980. https://doi.org/10.1016/j.exppara.2020.107980

Rajamanickam K, Yang J, Sakharkar MK. Phytochemicals as alternatives to antibiotics against major pathogens involved in bovine respiratory disease (BRD) and bovine mastitis (BM). Bioinformation 2019; 15(1):32–35. https://doi.org/10.6026/97320630015032

Macías MA, López JCS, Osegueda SR, Córdova IG, Ledezma FG, Marrero JG. In vitro antimicrobial activity of mexican plants on bovine mastitis bacteria: Preliminary studies. Bioscience Journal 2020; 36(1):183–190. https://doi.org/10.14393/BJ-v36n1a2020-42137

Regassa F, Araya M. In vitro antimicrobial activity of Combretum molle (Combretaceae) against Staphylococcus aureus and Streptococcus agalactiae isolated from crossbred dairy cows with clinical mastitis. Tropical Animal Health and Production 2012; 44:1169–1173. https://doi.org/10.1007/s11250-011-0054-4

Nehme R, Andrés S, Pereira RB, Jemaa MB, Bouhallab S, Ceciliani F, López S, Rahali FZ, Ksouri R, Pereira DM, Abdennebi‐najar L. Essential oils in livestock: From health to food quality. Antioxidants 2021; 10(2):1–42. https://doi.org/10.3390/antiox10020330

Günal M, Pinski B, AbuGhazaleh AA. Evaluating the effects of essential oils on methane production and fermentation under in vitro conditions. Italian Journal of Animal Science 2017; 16(3):500–506. https://doi.org/10.1080/1828051X.2017.1291283

Manafi M, Hedayati M, Pirany N, Omede AA. Comparison of performance and feed digestibility of the non-antibiotic feed supplement (Novacid) and an antibiotic growth promoter in broiler chickens. Poultry Science 2019; 98(2):904–911. https://doi.org/10.3382/ps/pey437

Herawati O, Untari T, Anggita M, Artanto S. Effect of mangosteen (Garcinia mangostana L.) peel extract as an antibiotic growth promoter on growth performance and antibiotic resistance in broilers. Veterinary World 2020; 13(4):796–800. https://doi.org/10.14202/vetworld.2020.796-800

Pujada-Abad H, Vega-Vilca J, Velásquez Vergara C, Palacios-Rodríguez B. Niveles de orégano (Origanum vulgare) en la dieta y su influencia en el rendimiento productivo del pollo de engorde. Revista de Investigaciones Veterinarias del Perú 2019; 30(3):1077–1082. https://doi.org/10.15381/rivep.v30i3.16599

Alali WQ, Hofacre CL, Mathis GF, Faltys G. Effect of essential oil compound on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers. Poultry Science 2013; 92(3):836–841. https://doi.org/10.3382/ps.2012-02783

Alborés S, Pianzzola MJ, Soubes M, Cerdeira, MP. Biodegradation of agroindustrial wastes by Pleurotus spp for its use as ruminant feed. Electronic Journal of Biotechnology 2006; 9(3):215–220. https://doi.org/10.2225/vol9-issue3-fulltext-2

Bermúdez RCS, García NO, Mustelier IP, Martínez OR, López YF. Valor agregado del sustrato remanente obtenido en el cultivo de seta comestible-medicinal Pleurotus ostreatus. Tecnología Química 2019; 39(3):564–579.

Wan Mahari WA, Peng W, Nam WL, Yang H, Lee XY, Lee YK, Liew RK. Ma NL, Mohammad A, Sonne C, Van Le Q, Show PL, Chen WH, Lam SS. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. Journal of Hazardous Materials 2020; 400:123156. https://doi.org/10.1016/j.jhazmat.2020.123156

Nie H, Wang Z, You J, Zhu G, Wang H, Wang F. Comparison of in vitro digestibility and chemical composition among four crop straws treated by Pleurotus ostreatus. Asian-Australasian Journal of Animal Sciences 2020; 33(1):24–34. https://doi.org/10.5713/ajas.18.0023

Zuo S, Niu D, Zheng M, Jiang D, Tian P, Li R, Xu C. Effect of Irpex lacteus , Pleurotus ostreatus and Pleurotus cystidiosus pretreatment of corn stover on its improvement of the in vitro rumen fermentation. Journal of the Science of Food and Agriculture 2018; 98(11):4287–4295. https://doi.org/10.1002/jsfa.8951

Kumla J, Suwannarach N, Sujarit K, Penkhrue W, Kakumyan P, Jatuwong K, Vadthanarat S, Lumyong S. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules 2020; 25(12):1–41. https://doi.org/10.3390/molecules25122811

Baek YC, Kim MS, Reddy KE, Oh YK, Jung YH, Yeo JM, Choi H. Rumen fermentation and digestibility of spent mushroom (Pleurotus ostreatus) substrate inoculated with lactobacillus brevis for hanwoo steers. Revista Colombiana de Ciencias Pecuarias 2017; 30(4):267–277. https://doi.org/10.17533/udea.rccp.v30n4a02

Chuang WY, Hsieh YC, Lee TT. The effects of fungal feed additives in animals: A review. Animals 2020; 10(5):805. https://doi.org/10.3390/ani10050805

Rodrigues MAM, Pinto P, Bezerra RMF, Dias AA, Guedes CVM, Cardoso VMG, Cone JW, Ferreira LMM, Colaço J, Sequeira CA. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Animal Feed Science and Technology 2008; 141(3–4):326–338. https://doi.org/10.1016/j.anifeedsci.2007.06.015

Akinfemi A, Adu OA, Doherty F. Conversion of sorghum stover into animal feed with white-rot fungi: Pleurotus ostreatus and Pleurotus pulmonarius. African Journal of Biotechnology 2010; 9(11):1706–1712. https://doi.org/10.5897/AJB10.1453

Liu J, Liu B, Zhan L, Wang P, Ju M, Wu W. Solid-State Fermentation of Ammoniated Corn Straw to Animal Feed by Pleurotus ostreatus Pl-5. BioResources 2016; 12(1):1723–1736. https://doi.org/10.15376/biores.12.1.1723-1736

Khan NA, Hussain S, Ahmad N, Alam S, Bezabhi M, Hendriks WH, Yu P, Cone JW. Improving the feeding value of straws with Pleurotus ostreatus. Animal Production Science 2015; 55(2):241–245. https://doi.org/10.1071/AN14184

Badarina I, Evvyernie D, Toharmat T, Herliyana EN, Darusman LK. Nutritive Value of Coffee Husk Fermented with Pleurotus ostreatus as Ruminant Feed. Media Peternakan 2013; 36(1):58–63. https://doi.org/10.5398/medpet.2013.36.1.58

Wanzenböck E, Apprich S, Tirpanalan Ö, Zitz U, Kracher D, Schedle K, Kneifel W. Wheat bran biodegradation by edible Pleurotus fungi – A sustainable perspective for food and feed. LWT - Food Science and Technology 2017; 86:123–131. https://doi.org/10.1016/j.lwt.2017.07.051

Trejo-López MT, Ayala-Martínez M, Zepeda-Bastida A, Franco-Fernández MJ, Soto-Simental S. Using spent Pleurotus ostreatus substrate to supplemented goats to increase fresh cheese yields. Small Ruminant Research 2021; 195:106297. https://doi.org/10.1016/j.smallrumres.2020.106297

Lee TT, Ciou JY, Chiang CJ, Chao YP, Yu B. Effect of Pleurotus eryngii stalk residue on the oxidative status and meat quality of broiler chickens. Journal of Agricultural and Food Chemistry 2012; 60(44):11157–11163. https://doi.org/10.1021/jf302740h

Adams S, Che D, Hailong J, Zhao B, Rui H, Danquah K, Qin G. Effects of pulverized oyster mushroom (Pleurotus ostreatus) on diarrhea incidence, growth performance, immunity, and microbial composition in piglets. Journal of the Science of Food and Agriculture 2019; 99(7):3616–3627. https://doi.org/10.1002/jsfa.9582

Khonkhaeng B, Cherdthong A. Pleurotus Ostreatus and Volvariella volvacea Can Enhance the Quality of Purple Field Corn Stover and Modulate Ruminal Fermentation and Feed Utilization in Tropical Beef Cattle. Animals 2019; 9(12):1084. https://doi.org/10.3390/ani9121084.

Publicado
2023-05-15
Cómo citar
Zepeda Bastida, A., Meza Galindo, L. M., Jorge Castillo , H. P., García Vázquez, L. M., Hernández Aco, R. S., & Ocampo López, J. (2023). Uso de productos y subproductos agrícolas en la medicina veterinaria y zootecnia. Boletín De Ciencias Agropecuarias Del ICAP, 9(Especial), 12-19. https://doi.org/10.29057/icap.v9iEspecial.9228

Artículos más leídos del mismo autor/a