Minería de texto para el estudio de un estado del arte en el uso de señales fisiológicas para la detección de emociones: una perspectiva en la interacción humano robot
Resumen
Este artículo presenta un enfoque basado en el análisis de resúmenes para conocer la tendencia del uso de señales fisiológicas, así como la viabilidad de aplicar estas técnicas en la inducción de emociones y estados cognitivos en personas sanas. El objetivo de este artículo es determinar la viabilidad de desarrollar herramientas tecnológicas, que ayuden a la detección del estado emocional y cognitivo de un usuario al interactuar con un robot. Para ello incialmente se recopilaron 8623 resúmenes de la biblioteca digital de
IEEE, que se relacionan con los temas de neurometría y biometría durante un periodo aproximado de 50 años atrás. Sin embargo, al analizar los resultados se concluye que son de poca utilidad para el objetivo de esta investigación, así que se agrega en la nueva búsqueda el término “emociones”. El número de artículo se reduce a 110, se reconstruye el modelo de ciclo de vida o curva S utilizando el segmento del polinomio cúbico. Los resultados demuestran que existe una factibilidad y viabilidad de considerar la
biometría y la neurometría en la detección de emociones.
Descargas
Citas
(2019). Ieee xplore digital library. https://ieeexplore.ieee.org/ Xplore/. Accessed: 2019-03-10. Ali, S. M., Darbar, Z. A., y Junejo, K. N. (2015). Age estimation from facial images using biometric ratios and wrinkle analysis. En 2015 5th National Symposium on Information Technology: Towards New Smart World (NSITNSW), pp. 1–5. IEEE.
Blondet, M. V. R., Laszlo, S., y Jin, Z. (2015). Assessment of permanence of non-volitional eeg brainwaves as a biometric. En IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015), pp. 1–6. IEEE.
Bulagang, A. F., Weng, N. G., Mountstephens, J., y Teo, J. (2020). A review of recent approaches for emotion classification using electrocardiography and electrodermography signals. Informatics in Medicine Unlocked, 20:100363.
Chiranjeevi, P., Gopalakrishnan, V., y Moogi, P. (2015). Neutral face classification using personalized appearance models for fast and robust emotion detection. IEEE Transactions on Image Processing, 24(9):2701–2711.
Chuah, S. y Yu, J. (2021). The future of service: The power of emotion in human-robot interaction. Journal of Retailing and Consumer Services, 61:1–8.
García-Martínez, B., Martínez-Rodrigo, A., Alcaraz, R., Fernández- Caballero, A., y Gonz´alez, P. (2017). Nonlinear methodologies applied to automatic recognition of emotions: an eeg review. En International Conference
on Ubiquitous Computing and Ambient Intelligence, pp. 754–765.
Gonzáles-Martinez, A. (2014). Visualización de emociones basado en el modelo de plutchik. Tesis de maestría, IPN, México.
Goyal, G. y Singh, J. (2018). Minimum annotation identification of facial affects for video advertisement. En 2018 International Conference on Intelligent Circuits and Systems (ICICS), pp. 300–305. IEEE.
Hayano, J., Tanabiki, T., Iwata, S., Abe, K., y Yuda, E. (2018). Estimation of emotions by wearable biometric sensors under daily activities. En 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE), pp. 240–
IEEE.
Kaklauskas, A., Ubarte, I., Tupenaite, L., y Raupys, D. (2018). Video neuroadvertising recommender model for a ective bim. En 2018 7th International Conference on Computers Communications and Control (ICCCC), pp.
–251. IEEE.
Khalil, R., Arasteh, A., y Sarkar, A. K. (2017). Eeg based biometrics using emotional stimulation data. En 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp. 246–249. IEEE.
Kuhn, T. S. (1970a). The structure of scientific revolutions, volumen 111. Chicago University of Chicago Press.
Kuhn, T. S. (1970b). The structure of scientific revolutions, volumen 111. Chicago University of Chicago Press.
Makagonov, P., Figueroa, A. R., y Gelbukh, A. (2006). Studying evolution of a branch of knowledge by constructing and analyzing its ontology. En International
Conference on Application of Natural Language to Information Systems, pp. 37–45. Springer.
Makagonov, P. y Ruiz Figueroa, A. (2004). Study of knowledge evolution in parallel computing by short texts analysis. En Iberoamerican Congress on Pattern Recognition, pp. 439–445. Springer.
Mavridou, I., McGhee, J. T., Hamedi, M., Fatoorechi, M., Cleal, A., Ballaguer-Balester, E., Seiss, E., Cox, G., y Nduka, C. (2017). Faceteq interface demo for emotion expression in vr. En 2017 IEEE Virtual Reality (VR), pp. 441–442. IEEE.
Moore, E. (2016). Managing the loss of control over cyber identity. En 2016 Third International Conference on Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC), pp. 233–238. IEEE.
Noyons, E. C. M. (1999). Bibliometric mapping as a science policy and research management tool. Leiden University.
Purnomo, M. H. (2016). Keynote# 1: Limitless possibilities of pervasive computingon biomedical engineering. En 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 1–4. IEEE.
Rahman, M. M., Sarkar, A. K., Hossain, M. A., Hossain, M. S., Islam, M. R., Hossain, M. B., Quinn, J. M., y Moni, M. A. (2021). Recognition of human emotions using eeg signals: A review. Computers in Biology and Medicine,
:104696.
Ruiz Figueroa, A. y Makagonov, P. (2007). Modelos de desarrollo del hardware y software basados en el estudio de computaci´on paralela. Interciencia, 32(3):160–166.
Samona, Y., Pintavirooj, C., y Visitsattapongse, S. (2017). Study of ecg variation in daily activity. En 2017 10th Biomedical Engineering International Conference (BMEiCON), pp. 1–5. IEEE.
Soroush, M. Z., Maghooli, K., Setarehdan, S. K., y Nasrabadi, A. M. (2017). A review on eeg signals based emotion recognition. International Clinical Neuroscience Journal, 4(4):118–129.
Spezialetti, M., Placidi, G., y Rossi, S. (2020). Emotion recognition for humanrobot interaction: Recent advances and future perspectives. Frontiers in Robotics and AI, 7:1–12.
Suhaimi, Nazmi Sofian and Mountstephens, James and Teo, Jason and others (2020). Eeg-based emotion recognition: A state-of-the-art review of current trends and opportunities. Computational intelligence and neuroscience, 2020:1–19.
Varghees, V. N. y Ramachandran, K. (2016). Two-channel heart sound segmentation framework using phonocardiogram and pulsatile signals. En 2016 IEEE Students Technology Symposium (TechSym), pp. 305–310. IEEE.
Wagh, K. P. y Vasanth, K. (2019). Electroencephalograph (eeg) based emotion recognition system: A review. Innovations in Electronics and Communication Engineering, pp. 37–59.
Xu, T., Zhou, Y., Wang, Z., y Peng, Y. (2018). Learning emotions eeg-based recognition and brain activity: A survey study on bci for intelligent tutoring system. Procedia computer science, 130:376–382.