Robot Skin: Fully-Compliant Control Framework Using Multi-modal Tactile Events
Resumen
En este artículo presentamos un sistema de control multi-modal para proveer a robots industriales con comportamientos dinámicos obedientes al tacto, aun cuando dichos robots son solamente comandados vía posición. Estos comportamientos dinámicos son obtenidos a través de la fusión de señales de sensores multi-modales obtenidas de una piel artificial robótica con diferentes esquemas de control. Estos comportamientos dinámicos permiten demostrar tareas a robots de manera segura para el usuario. El sistema presentado en este trabajo permite conectar actividades demostradas kinestéticamente con comandos de bajo nivel para robots. Esto se logra usando una novedosa técnica de enseñanza por demostración basada en un motor semántico. El sistema es validado mediante un robot móvil aplicado a un escenario industrial, donde nuestro sistema hace de un robot rígido, un sistema flexible, seguro, y adaptable bajo diferentes condiciones, por ejemplo, diferentes efectores finales con múltiples interfaces de control (interfaces de posición, velocidad y par).
Descargas
Citas
Aertbeliën, E., Schutter, J. D., Sept 2014. eTaSL/eTC: A constraint-based task specification language and robot controller using expression graphs. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 1540–1546. DOI: 10.1109/IROS.2014.6942760
Andersen, R. H., Solund, T., Hallam, J., June 2014. Definition and Initial Case-Based Evaluation of Hardware-Independent Robot Skills for Industrial Robotic Co-Workers. In: ISR/Robotik 2014; 41st International Symposium on Robotics. pp. 1–7.
Bergner, F., Mittendorfer, P., Dean-Leon, E. C., Cheng, G., 2015. Event-based signaling for reducing required data rates and processing power in a largescale artificial robotic skin. In: IROS. IEEE, pp. 2124–2129.
Björkelund, A., Bruyninckx, H., Malec, J., Nilsson, K., Nugues, P., 2012. Knowledge for Intelligent Industrial Robots. In: AAAI Spring Symposium: Designing Intelligent Robots. Vol. SS-12-02 of AAAI Technical Report. AAAI.
Dean, E., Ramirez-Amaro, K., Bergner, F., Dianov, I., Lanillos, P., Cheng, G., October 2016. Robotic technologies for fast deployment of industrial robot systems. In: 42nd IEEE Industrial Electronics Conference (IEEE IECON2016). [Accepted]. IEEE.
Dean-León, E., Cheng, G., Nov 2014. A new method for solving 6D ImageBased Visual Servoing with virtual composite camera model. In: 2014 IEEE-RAS Int. Conf. on Humanoid Robots. pp. 519–525.
Dean-Leon, E., Nair, S., Knoll, A., Dec 2012. User friendly Matlab-toolbox for symbolic robot dynamic modeling used for control design. In: Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on. pp. 2181–2188.
Garcia-Valdovinos, L. G., Parra-Vega, V., Mendez-Iglesias, J. A., Arteaga, M. A., Nov 2005. Cartesian sliding PID force/position control for transparent bilateral teleoperation. In: 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005.
Gorostiza, J. F., Barber, R., Khamis, A. M., Malfaz, M., Pacheco, R., Rivas, R., Corrales, A., Delgado, E., Salichs, M. A., Sept 2006. Multimodal humanrobot interaction framework for a personal robot. In: ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication. pp. 39–44. DOI: 10.1109/ROMAN.2006.314392
Hein, B., Hensel, M., W¨orn, H., 2008. Intuitive and model-based on-line programming of industrial robots: A modular on-line programming environment. In: ICRA. IEEE, pp. 3952–3957.
ISO/TS-15066, 2014. ISO/TS15066, Safety for collaborative industrial robots. Technical Standard ISO 15066.
Krüger, V., Chazoule, A., Crosby, M., Lasnier, A., Pedersen, M. R., Rovida, F., Nalpantidis, L., Petrick, R. P. A., Toscano, C., Veiga, G., 2016. A Vertical and Cyber-Physical Integration of Cognitive Robots in Manufacturing. Proceedings of the IEEE 104 (5), 1114–1127.
Luo, R. C., Chang, C.-C., 2012. Multisensor Fusion and Integration: A Review on Approaches and Its Applications in Mechatronics. IEEE Trans. Industrial Informatics 8 (1), 49–60.
Mittendorfer, P., Cheng, G., 2011. Humanoid Multimodal Tactile-Sensing Modules. IEEE Trans. Robotics 27 (3), 401–410.
Mittendorfer, P., Cheng, G., 2012. 3D surface reconstruction for robotic body parts with artificial skins. In: IROS. IEEE, pp. 4505–4510.
Mittendorfer, P., Dean, E., Cheng, G., Sept 2014a. 3D spatial self-organization of a modular artificial skin. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 3969–3974. DOI: 10.1109/IROS.2014.6943120
Mittendorfer, P., Dean, E., Cheng, G., Nov 2014b. Automatic robot kinematic modeling with a modular artificial skin. In: 2014 IEEE-RAS International Conference on Humanoid Robots. pp. 749–754.
DOI: 10.1109/HUMANOIDS.2014.7041447
Nicolescu, M. N., Mataric, M. J., 2003. Natural methods for robot task learning: Instructive demonstrations, generalization and practice. In: Proceedings of the second international joint conference on Autonomous agents and multiagent systems. ACM, pp. 241–248.
Pan, Z., Polden, J., Larkin, N., van Duin, S., Norrish, J., 2010. Recent Progress on Programming Methods for Industrial Robots. In: ISR/ROBOTIK. VDE Verlag, pp. 1–8.
Parra-Vega, V., 2001. Chattering-free dynamical tbg adaptive sliding mode control of robot arms with dynamic friction for tracking in finite-time. In: Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on. Vol. 4. pp. 3471–3476 vol.4. DOI: 10.1109/ROBOT.2001.933155
Pedersen, M. R., Nalpantidis, L., Andersen, R. S., Schou, C., Bøgh, S., Krüger, V., Madsen, O., 2016. Robot skills for manufacturing: From concept to industrial deployment. Robotics and Computer-Integrated Manufacturing 37, 282–291.
Ramirez-Amaro, K., Beetz, M., Cheng, G., 2015a. Transferring skills to humanoid robots by extracting semantic representations from observations of human activities. Artificial Intelligence.
Ramirez-Amaro, K., Dean-Leon, E. C., Cheng, G., 2015b. Robust semantic representations for inferring human co-manipulation activities even with different demonstration styles. In: Humanoids. IEEE, pp. 1141–1146.
Santis, A. D., Siciliano, B., Luca, A. D., Bicchi, A., 2008. An atlas of physical human–robot interaction. Mechanism and Machine Theory 43 (3), 253–270.
Derechos de autor 2019 Emmanuel Dean, Karinne Ramirez-Amaro, Florian Bergner, Gordon Cheng
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.