Caracterización de las SMAs y sus aplicaciones: Una revisión

  • I. Yuritsa Paez Pidiache Instituto Politécnico Nacional, UPIITA.
  • Norma Beatriz Lozada Castillo Instituto Politécnico Nacional, UPIITA.
  • Alberto Luviano Juárez Instituto Politécnico Nacional, UPIITA
Palabras clave: Aleaciones de Memoria de Forma, biomédica, actuadores, robótica

Resumen

Los materiales elaborados a partir de aleaciones con memoria de forma (SMA) son clasificados como "materiales inteligentes", pues presentan características como : alta relación fuerza / peso, bajo peso y accionamiento silencioso. El Nitinol es una aleación metálica con una relación de 50% Ni - 50% Ti (NiTi) que se entrena en memoria y forma,la cual es ampliamente utilizada para imitar el comportamiento de los músculos humanos, pues al calentarse se contraen, debido al efecto de memoria de forma, y regresan a su forma al enfriarse. Una de las maneras de emplear el NiTi en aplicaciones biomédicas y caracterizar el material, es a partir del diseño de actuadores a base de SMAs. Este trabajo presenta algunos métodos para la caracterización de actuadores con SMA y además hace una revisión, definido antes para usar las aplicaciones biomédicas desde el descubrimiento del NiTi y la implementación en sistemas de rehabilitación actuales.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdelaal, W. G. A., Nagib, G., 2014. Modeling and simulation of sma actuator wire. In: 2014 9th International Conference on Computer Engineering & Systems (ICCES). IEEE, pp. 401–405.

Aguiar, R. A., Savi, M. A., Pacheco, P. M., 2010. Experimental and numerical investigations of shape memory alloy helical springs. Smart Materials and Structures 19 (2), 025008.

Al-Bender, F., Lampaert, V., Swevers, J., 2005. The generalized maxwellslip model: a novel model for friction simulation and compensation. IEEE Transactions on automatic control 50 (11), 1883–1887.

Al Janaideh, M., Mao, J., Rakheja, S., Xie, W., Su, C.-Y., 2008. Generalized prandtl-ishlinskii hysteresis model: Hysteresis modeling and its inverse for compensation in smart actuators. In: 2008 47th IEEE Conference on Decision and Control. IEEE, pp. 5182–5187.

Al Janaideh, M., Rakheja, S., Su, C.-Y., 2010. An analytical generalized prandtl–ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Transactions on mechatronics 16 (4), 734–744.

Auricchio, F., Petrini, L., 2004. A three-dimensional model describing stresstemperature induced solid phase transformations: solution algorithm and boundary value problems. International journal for numerical methods in engineering 61 (6), 807–836.

Ballandras, S., Calin, M., Zissi, S., Bertsch, A., Andre, J., Hauden, D., 1997.

Microstereophotolithography and shape memory alloy for the fabrication of miniaturized actuators. Sensors and Actuators A: Physical 62 (1-3), 741– 747.

Bergamasco, M., Salsedo, F., Dario, P., 1989. A linear sma motor as directdrive robotic actuator. In: IEEE (Ed.), Proceedings, 1989 International Conference on Robotics and Automation. International Conference on Industrial Technology-ICIT’94l, Guangzhou, China, China, pp. 618–623.

Brinson, L. C., 1993. One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. Journal of intelligent material systems and structures 4 (2), 229–242.

Buehler, W. J., Gilfrich, J., Wiley, R., 1963. Effect of low-temperature phase changes on the mechanical properties of alloys near composition tini. Journal of applied physics 34 (5), 1475–1477.

Cho, K.-J., Koh, J.-S., Kim, S., Chu, W.-S., Hong, Y., Ahn, S.-H., 2009. Review of manufacturing processes for soft biomimetic robots. International Journal

of Precision Engineering and Manufacturing 10 (3), 171–181.

Cianchetti, M., Follador, M., Mazzolai, B., Dario, P., Laschi, C., 2012. Design and development of a soft robotic octopus arm exploiting embodied intelligence. In: 2012 IEEE International Conference on Robotics and Automation. IEEE, pp. 5271–5276.

Cianchetti, M., Licofonte, A., Follador, M., Rogai, F., Laschi, C., 2014. Bioinspired soft actuation system using shape memory alloys. In: Actuators. Vol. 3. Multidisciplinary Digital Publishing Institute, pp. 226–244.

Colorado, J., Barrientos, A., Rossi, C., 2011. Musculos inteligentes en robots biologicamente inspirados: modelado, control y actuación. Revista Iberoamericana de Automatica e Informática Industrial RIAI 8 (4), 385–396.

Copaci, D., Martín, F., Moreno, L., Blanco, D., 2019. Sma based elbow exoskeleton for rehabilitation therapy and patient evaluation. IEEE Access 7, 31473–31484.

Copaci, D. S., Blanco, D., Martin Clemente, A., Moreno, L., 2020. Flexible shape memory alloy actuators for soft robotics: Modelling and control. International Journal of Advanced Robotic Systems 17 (1), 1–15. DOI: 10.1177/1729881419886747

Cortez Vega, R., Chairez, I., Luviano Juarez, A., Feliu Batlle, V., 2018. A hybrid dynamic model of shape memory alloy spring actuators. Measurement 114, 340–353.

Cross, W. B., Kariotis, A. H., Stimler, F. J., 1969. Nitinol characterization study. National aeronautics and space administration 37 (8).

DeLaurentis, K., Mavroidis, C., Pfeiffer, C., 2000. Development of a shape memory alloy actuated robotic hand. In: Proc. 7th International Conference on New Actuators. pp. 281–284.

Drexel, M., Selvaduray, G., Pelton, A., 2007. The effects of cold work and heat treatment on the properties of nitinol wire. Vol. 42665.

Duerig, T., Pelton, A., Stockel, D., 1996. The use of superelasticity in medicine. Metall-Heidelberg 50 (9), 569–574.

Duerig, T., Pelton, A., Stockel, D., 1999. An overview of nitinol medical applications. Materials Science and Engineering: A 273, 149–160.

Dumoulin, C., Cochelin, B., 2000. Mechanical behaviour modelling of balloonexpandable stents. Journal of biomechanics 33 (11), 1461–1470.

Dynalloy, I., 2013. Technical characteristics of flexinol actuator wires table of contents makers of dynamic alloys nickel - titanium alloy physical properties. Flexinol, 1–12. DOI: 10.1128/jcm.01398-08

Eckelmeyer, K., 1976. Effect of alloying on the shape memory phenomenon in nitinol. Scr. Metall.;(United States) 10 (8).

Es-Souni, M., Es-Souni, M., Fischer-Brandies, H., 2005. Assessing the biocompatibility of niti shape memory alloys used for medical applications. Analytical and bioanalytical chemistry 381 (3), 557–567.

Flor, S. d. l., 2005. Simulacion numérica y correlación experimental de las propiedades mecánicas en las aleaciones con memoria de forma. Universitat Politecnica de Catalunya.

Frick, C. P., Ortega, A. M., Tyber, J., Maksound, A. E. M., Maier, H. J., Liu, Y., Gall, K., 2005. Thermal processing of polycrystalline niti shape memory

alloys. Materials Science and Engineering: A 405 (1-2), 34–49.

Fumagalli, L., Butera, F., Coda, A., 2009. SmartFlex O NiTi Wires for Shape Memory Actuators. Journal of Materials Engineering and Performance 18 (5), 691–695.

DOI: 10.1007/s11665-009-9407-9

Goldfarb, M., Celanovic, N., 1997. Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Systems Magazine 17 (3), 69– 79.

Gomez, A., Restrepo, C. A., 2005. Cables musculares. Revista EIA 1 (4), 103– 111.

Hashimoto, M., Tabata, T., Yuki, T., 1999. Development of electrically heated sma active forceps for laparoscopic surgery. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No 99CH36288C). Vol. 3. IEEE, pp. 2372–2377.

Ikhouane, F., Manosa, V., Rodellar, J., 2007. Dynamic properties of the hysteretic bouc-wen model. Systems & control letters 56 (3), 197–205.

Ikuta, K., 1990. Micro/miniature shape memory alloy actuator. In: Proceedings., IEEE International Conference on Robotics and Automation. IEEE, pp. 2156–2161.

Ikuta, K., Tsukamoto, M., Hirose, S., 1988. Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation. IEEE, pp. 427–430.

Ismail, M., Ikhouane, F., Rodellar, J., 2009. The hysteresis bouc-wen model, a survey. Archives of Computational Methods in Engineering 16 (2), 161–188.

Jani, J. M., Martin, L., Subic, A., Gibson, M. A., 2014. A review of shape memory alloy research, applications and opportunities. Materials and Design

(1980-2015) 56, 1078–1113.

Jayender, J., Patel, R. V., Nikumb, S., Ostojic, M., 2008. Modeling and control of shape memory alloy actuators. IEEE transactions on control systems technology 16 (2), 279–287.

Kauffman, G. B., Mayo, I., 1997. The story of nitinol: the serendipitous discovery of the memory metal and its applications. The chemical educator 2 (2), 1–21.

Klemas, J., 2002. Materiales inteligentes. aleaciones metálicas y polímeros con memoria de forma. CES Medicina 16 (2), 9–19.

Koganezawa, K., Watanabe, Y., Shimizu, N., 1997. Antagonistic muscle-like actuator and its application to multi-dof forearm prosthesis. Advanced Robotics 12 (7-8), 771–789.

Lagoudas, D. C., 2008. Shape memory alloys: modeling and engineering applications. Springer.

Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P.,2012. Soft robot arm inspired by the octopus. Advanced Robotics 26 (7), 709–727.

Liu, Y., Shan, J., Meng, Y., Zhu, D., 2015. Modeling and identification of asymmetric hysteresis in smart actuators: A modified ms model approach. IEEE/ASME Transactions on Mechatronics 21 (1), 38–43.

Loaiza, J. L., Arzola, N., 2011. Evolución y tendencias en el desarrollo de prótesis de mano. Dyna 78 (169), 191–200.

Luna, M. A., Moya, J. F., Aguilar, W. G., Abad, V., 2017. Robot salamandra anfibio con locomoción bioinspirada Robotics amphibious salamander with bio-inspired locomotion. INGENIUS:Revista de ciencia y tecnología 57, 51–59.

Machado, L., Savi, M., 2003. Medical applications of shape memory alloys. Brazilian journal of medical and biological research 36 (6), 683–691.

Machado, L. G., Lagoudas, D. C., 2008. Thermomechanical characterization of shape memory alloy materials. In: Lagoudas, D. C. (Ed.), Shape Memory Alloys : modeling and Engineering Applications. Springer Science and Business Media,, Boston, Ch. II, pp. 53–119.

Majima, S., Kodama, K., Hasegawa, T., 2001. Modeling of shape memory alloy actuator and tracking control system with the model. IEEE Transactions on

Control Systems Technology 9 (1), 54–59.

Mavroidis, C., 2002. Development of advanced actuators using shape memory alloys and electrorheological fluids. Journal of Research in Nondestructive

Evaluation 14 (1), 1–32.

Migliavacca, F., Petrini, L., Massarotti, P., Schievano, S., Auricchio, F., Dubini, G., 2004. Stainless and shape memory alloy coronary stents: a computational

study on the interaction with the vascular wall. Biomechanics and Modeling in Mechanobiology 2 (4), 205–217.

Mohd Jani, J., Leary, M., Subic, A., 2017. Designing shape memory alloy linear actuators: A review. Journal of Intelligent Material Systems and Structures 28 (13), 1699–1718.

Ölander, A., 1932. An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society 54 (10), 3819–3833.

Ortín, J., Delaey, L., 2002. Hysteresis in shape-memory alloys. International Journal of Non-Linear Mechanics 37 (8), 1275–1281.

Pelton, A., Stockel, D., Duerig, T., 1 2000. Medical uses of nitinol. In: Shape Memory Materials. Vol. 327 of Materials Science Forum. Trans Tech Publications Ltd, pp. 63–70. DOI: 10.4028/www.scientific.net/MSF.327-328.63

Petrini, L., Migliavacca, F., Massarotti, P., Schievano, S., Dubini, G., Auricchio, F., 2005. Computational studies of shape memory alloy behavior in biomedical applications.

Paez, I. Y., Luviano Júarez, A., Castillo Castañeda, E., 2020. Diseño de actuadores basados en aleaciones con memoria de forma. In: Editora, U. (Ed.), La praxis en la ingeniería y su aporte al desarrollo regional. Vol. 1. Innovación industrial: eficiencia energética, control y automatización, mantenimiento y gestion de activos, Colombia, Ch. 4, pp. 89–91. ´

Rakotondrabe, M., 2010. Bouc–wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Transactions on Automation Science and Engineering 8 (2), 428–431.

Rasband, W.S., ImageJ, U. S. N. I. o. H., 1997. Imagej. URL: https://imagej.nih.gov/ij/

Ryhanen, J., 1999. Biocompatibility evaluation of nickel-titanium shape memory metal alloy. Oulun yliopisto.

Salehi, M., Hamedi, M., Nohouji, H. S., Arghavani, J., 2013. Mechanical properties identification and design optimization of nitinol shape memory alloy microactuators. Smart materials and structures 23 (2), 025001.

Sayyaadi, H., Zakerzadeh, M. R., 2012. Position control of shape memory alloy actuator based on the generalized prandtl–ishlinskii inverse model. Mechatronics 22 (7), 945–957.

Schiele, A., Letier, P., Van Der Linde, R., Van Der Helm, F., 2006. Bowden cable actuator for force-feedback exoskeletons. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 3599–3604.

Serrano, D., Copaci, D.-S., Moreno, L., Blanco, D., 2018. Sma based wrist exoskeleton for rehabilitation therapy. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 2318–2323.

Shabalovskaya, S., 1995. Biological aspects of tini alloy surfaces. Journal de Physique IV 5 (C8), C8–1199.

Skiljan, I., 2012. IrfanView. URL: https://www.irfanview.com/

Stoeckel, D., 2000. Nitinol medical devices and implants. Minimally invasive therapy & allied technologies 9 (2), 81–88.

Storn, R., Price, K., 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. ournal of global optimization 11, 341–359.

Stucker, R., 2009. Results of treatment of progressive scoliosis with sma staples. Der Orthopade 38 (2), 176–180.

Sun, L., Huang, W., Cheah, J., 2010. The temperature memory effect and the influence of thermo-mechanical cycling in shape memory alloys. Smart materials and structures 19 (5), 055005.

Sun, L., Huang, W. M., Ding, Z., Zhao, Y., Wang, C. C., Purnawali, H., Tang, C., 2012. Stimulus-responsive shape memory materials: a review. Materials

& Design 33, 577–640.

Tarkesh, E., Elahinia, M., 2007. Nonlinear control techniques for a sma active ankle foot orthosis. In: ASME 2007 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection, pp. 397–403.

Vesga, W., Forero, L. E., Osorio, F. R., 2007. Estudio experimental del efecto termomecanico de las transformaciones de fase en las aleaciones ni-ti “nitinol”. Scientia et technica 1 (36), 631–636.

Villoslada, A., Flores, A., Copaci, D., Blanco, D., Moreno, L., 2015. Highdisplacement flexible shape memory alloy actuator for soft wearable robots. Robotics and Autonomous Systems 73, 91–101.

Villoslada Pecina, A., 2010. Diseño y aplicación de un actuador sma en el control de manos roboticas. B.S. thesis, UNIVERSIDAD CARLOS III Escuela Politécnica Superior Departamento.

Wen, M., Tu, G., Zong, Q., Xie, C., 1994. A study of niti shape memory alloy springs and its application in a new robotic actuator. In: Proceedings of 1994 IEEE International Conference on Industrial Technology-ICIT’94. IEEE, Guangzhou, China, China, pp. 215–219.

Wiest, J. H., Buckner, G. D., Plant, A., 2014. Antagonistic shape memory alloy actuators using hysteretic recurrent neural networks 22 (3), 921–929.

Yang, K., Gu, C., 2002. A novel robot hand with embedded shape memory alloy actuators. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 216 (7), 737–745.

Publicado
2020-06-25
Cómo citar
Paez Pidiache, I. Y., Lozada Castillo, N. B., & Luviano Juárez, A. (2020). Caracterización de las SMAs y sus aplicaciones: Una revisión. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 8(16). https://doi.org/10.29057/icbi.v8i16.5713