Caracterización de la dinámica de redes de mapas de Hénon

Palabras clave: Mapa de Hénon, Arreglos de mapas acoplados, Acoplamiento difusivo, Caracterización dinámica.

Resumen

Se analiza un método para caracterizar sistemas dinámicos no lineales espacialmente extendidos que exhiben un comportamiento espacio-temporal tanto periódico como caótico. El sistema analizado es una red cuadrada bidimensional de mapas de Hénon acoplados (CHML) que interactúan con los vecinos más cercanos a través de un acoplamiento difusivo. Enfocándose en uno de los mapas de la red y midiendo una de sus variables dinámicas, se compara este método contra otras dos formas de caracterización del comportamiento dinámico de la red. Se demuestra que el muestreo de un solo mapa proporciona resultados más consistentes y efectivos que los otros dos métodos.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

María Teresa Méndez-Bautista, Universidad Autónoma del Estado de Hidalgo

Egresada de la Licenciatura en Química de la UAEH (1999) y de la Maestría en Tecnología de Polímeros del Centro de Investigación en Química Aplicada (2006), Saltillo, Coahuila.

Actualmente, maestra en el Área Académica de Ciencias de la Tierra y Materiales, trabajando en polímeros e impartiendo las asignaturas de Procesamiento de Materiales Poliméricos y Seminario de Investigación.

Citas

Ahmed, E., Abdu Salam, H. A., Fahmy, E. S., (2001). On Telegraph Reaction Diffusion Equation and Some Applications, Int. J. Mod. Phys. C12, 717-726. DOI: 10.1142/S0129183101001936

Báscones, R., García-Ojalvo, J., Sancho, J. M., (2002). Pulse propagation sustained by noise in arrays of bistable electronic circuits. Phys. Rev. E 65, 061108. DOI: 10.1103/PhysRevE.65.061108

Chakravarty, S., Halburd, R. G., Kent, S. L., (2003). Self-similar solutions of certain coupled integrable systems. J. Phys. A: Math. Gen. 36, 1371-1384. DOI: 10.1088/0305-4470/36/5/313

Chiam, K.H., Paul, M. R., Cross, M. C., Greenside, H. S., (2003). Mean flow and spiral defect chaos in Rayleigh-Bénard convection. Phys. Rev. E 67, 056206. DOI: 10.1103/PhysRevE.67.056206

Cross, M. C., Hohenberg, P. C., (1993). Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851-1112. DOI: 10.1103/RevModPhys.65.851

Daccord, G., Nittmann, J., Stanley, H.E., (1986). Radial viscous fingers and diffusion-limited aggregation: Fractal dimension and growth sites. Phys. Rev. Lett. 56, 336-339. DOI: 10.1103/PhysRevLett.56.336

Elezgaray, J., Arneodo, A., (1992). Crisis-induced intermittent bursting in reaction-diffusion chemical systems. Phys. Rev. Lett. 68, 714-717. DOI: 10.1103/PhysRevLett.68.714

Garik, P., Barkey, D., Ben–Jacob, E., Bochner, E., Broxholm, N., Miller, B., Orr, B., Zamir, R., (1989). Laplace- and diffusion-field-controlled growth in electrochemical deposition. Phys. Rev. Lett. 62, 2703-2706. DOI: 10.1103/PhysRevLett.62.2703

Hu, G., Xiao, D., Wang, Y., Xiang, T., Zhou, Q., (2017). Securing image information using double random phase encoding and parallel compressive sensing with updated sampling processes. Optics and Lasers in Engineering 98, 123-133. DOI: 10.1016/j.optlaseng.2017.06.013

Just, W., (1998). Analytical approach for piecewise linear coupled map lattices. J. Stat. Phys. 90, 727-748.

Kaneko, K., (1991). Coupled Map Lattice. In: Artuso R., Cvitanović P., Casati G. (Eds), Chaos, Order, and Patterns. Vol. 280. Springer, Boston, MA, pp. 237-247.

Kaneko, K., (1992). Chaos, CML focus issue 2, 279-367.

Lai, Y. C., Harrison, M. F., Frei, M. G., Osorio, I., (2003). Inability of Lyapunov Exponents to Predict Epileptic Seizures. Phys. Rev. Lett. 91, 068102. DOI: 10.1103/PhysRevLett.91.068102

Liu, Z., Chen, S., Hu, B., (1999). Coupled synchronization of spatiotemporal chaos. Phys. Rev. E 59, 2817-2821.

Lü, H., Hu, G., (2004). Propagation of desynchronous disturbances in synchronized chaotic one-way coupled map lattices. Phys. Rev. E 69, 036212. DOI: 10.1103/PhysRevE.69.036212

Meixner, M., Zoldi, S. M., Bose, S., Schöll, E., (2000). Karhunen-Loève local characterization of spatiotemporal chaos in a reaction-diffusion system. Phys. Rev. E 61, 1382-1385. DOI: 10.1103/PhysRevE.61.1382

Nicolis, G., Basios, V., Nicolis, C., (2004). Pattern formation and fluctuation-induced transitions in protein crystallization. J. Chem. Phys. 120, 7708-7719. DOI: 10.1063/1.1687339

O'Hern, C. S., Egolf, D. A., Greenside, H. S., (1996). Lyapunov spectral analysis of a nonequilibrium Ising-like transition. Phys. Rev. E 53, 3374-3386. DOI: 10.1103/PhysRevE.53.3374

Oprisan, S. A., (2002). An application of the least-squares method to system parameters extraction from experimental data. Chaos 12, 27 -32.

Pande, A., Pandit, R., (2000). Spatiotemporal chaos and nonequilibrium transitions in a model excitable medium. Phys. Rev. E 61, 6448-6460.

Qi, F., Hou, Z., Xin, H., (2003). Ordering chaos by random shortcuts. Rev. Lett. 91, 064102. DOI: 10.1103/PhysRevLett.91.064102

Sharma, A., Gupte, N., (2002). Spatiotemporal intermittency and scaling laws in inhomogeneous coupled map lattices. Phys. Rev. E 66, 036210. DOI: 10.1103/PhysRevE.66.036210

Tao, C., Zhang, Y., Du, G., Jiang, J. J., (2004). Estimating model parameters by chaos synchronization. Phys. Rev. E 69, 036204 DOI: 10.1103/PhysRevE.69.036204

Tran, D. M., (2001). Component mode synthesis methods using interface modes. Application to structures with cyclic symmetry. Comp. and Struct. 79, 209 -222. DOI: 10.1016/S0045-7949(00)00121-8

Turing, A. M., (1952). The Chemical Basis of Morphogenesis. Phil. Trans. Roy. Soc. B 237, 37-72. DOI: 10.1098/rstb.1952.0012

Tzenov, S. I., Davidson, R. C., (2003). Renormalization group reduction of the Hénon map and application to the transverse betatron motion in cyclic accelerators. New J. of Phys. 5, 67.1–67.13.

Wagner, C., Stoop, R., (2001). Optimized chaos control with simple limiters. Phys. Rev. E 63, 017201. DOI: 10.1103/PhysRevE.63.017201

Wang, Y., Wong, K-W, Xiao, D., (2011). Parallel hash function construction based on coupled map lattices. Communications in Nonlinear Science and Numerical Simulation 16, 2810-2821. DOI: 10.1016/j.cnsns.2010.10.001

Winfree, A. T., (1991). Varieties of spiral wave behavior: An experimentalist’s approach to the theory of excitable media. Chaos 1, 303-334. DOI: 10.1063/1.165844

Xi, H., Gunton, J. D., Viñals, J., (1993). Spiral defect chaos in a model of Rayleigh-Bénard convection. Phys. Rev. Lett. 71, 2030-2033 DOI: 10.1103/PhysRevLett.71.2030

Xu, Q., Sun, K., Cao, C., Zhu, C., (2019). A fast image encryption algorithm based on compressive sensing and hyperchaotic map. Optics and Lasers in Engineering 121, 203-214. DOI: 10.1016/j.optlaseng.2019.04.011

Yang, W., Ding, E-J, Ding, M., (1996). Universal scaling law for the largest Lyapunov exponent in coupled map lattices. Phys. Rev. Lett. 76, 1808-1811. DOI: 10.1103/PhysRevLett.76.1808

Zhang, W., Viñals, J., (1995). Secondary Instabilities and Spatiotemporal Chaos in Parametric Surface Waves. Phys. Rev. Lett. 74, 690-693. DOI: 10.1103/PhysRevLett.74.690

Zhang, Y-Q, Wang, X-Y, (2015). A new image encryption algorithm based on non-adjacent coupled map lattices. Applied Soft Computing 26, 10-20. DOI: 10.1016/j.asoc.2014.09.039

Publicado
2022-06-24
Cómo citar
Sausedo-Solorio, J. M., & Méndez-Bautista, M. T. (2022). Caracterización de la dinámica de redes de mapas de Hénon. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial2), 18-22. https://doi.org/10.29057/icbi.v10iEspecial2.8610
Tipo de manuscrito
Artículos de investigación