Caracterización de la dinámica de redes de mapas de Hénon
Resumen
Se analiza un método para caracterizar sistemas dinámicos no lineales espacialmente extendidos que exhiben un comportamiento espacio-temporal tanto periódico como caótico. El sistema analizado es una red cuadrada bidimensional de mapas de Hénon acoplados (CHML) que interactúan con los vecinos más cercanos a través de un acoplamiento difusivo. Enfocándose en uno de los mapas de la red y midiendo una de sus variables dinámicas, se compara este método contra otras dos formas de caracterización del comportamiento dinámico de la red. Se demuestra que el muestreo de un solo mapa proporciona resultados más consistentes y efectivos que los otros dos métodos.
Descargas
Citas
Ahmed, E., Abdu Salam, H. A., Fahmy, E. S., (2001). On Telegraph Reaction Diffusion Equation and Some Applications, Int. J. Mod. Phys. C12, 717-726. DOI: 10.1142/S0129183101001936
Báscones, R., García-Ojalvo, J., Sancho, J. M., (2002). Pulse propagation sustained by noise in arrays of bistable electronic circuits. Phys. Rev. E 65, 061108. DOI: 10.1103/PhysRevE.65.061108
Chakravarty, S., Halburd, R. G., Kent, S. L., (2003). Self-similar solutions of certain coupled integrable systems. J. Phys. A: Math. Gen. 36, 1371-1384. DOI: 10.1088/0305-4470/36/5/313
Chiam, K.H., Paul, M. R., Cross, M. C., Greenside, H. S., (2003). Mean flow and spiral defect chaos in Rayleigh-Bénard convection. Phys. Rev. E 67, 056206. DOI: 10.1103/PhysRevE.67.056206
Cross, M. C., Hohenberg, P. C., (1993). Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851-1112. DOI: 10.1103/RevModPhys.65.851
Daccord, G., Nittmann, J., Stanley, H.E., (1986). Radial viscous fingers and diffusion-limited aggregation: Fractal dimension and growth sites. Phys. Rev. Lett. 56, 336-339. DOI: 10.1103/PhysRevLett.56.336
Elezgaray, J., Arneodo, A., (1992). Crisis-induced intermittent bursting in reaction-diffusion chemical systems. Phys. Rev. Lett. 68, 714-717. DOI: 10.1103/PhysRevLett.68.714
Garik, P., Barkey, D., Ben–Jacob, E., Bochner, E., Broxholm, N., Miller, B., Orr, B., Zamir, R., (1989). Laplace- and diffusion-field-controlled growth in electrochemical deposition. Phys. Rev. Lett. 62, 2703-2706. DOI: 10.1103/PhysRevLett.62.2703
Hu, G., Xiao, D., Wang, Y., Xiang, T., Zhou, Q., (2017). Securing image information using double random phase encoding and parallel compressive sensing with updated sampling processes. Optics and Lasers in Engineering 98, 123-133. DOI: 10.1016/j.optlaseng.2017.06.013
Just, W., (1998). Analytical approach for piecewise linear coupled map lattices. J. Stat. Phys. 90, 727-748.
Kaneko, K., (1991). Coupled Map Lattice. In: Artuso R., Cvitanović P., Casati G. (Eds), Chaos, Order, and Patterns. Vol. 280. Springer, Boston, MA, pp. 237-247.
Kaneko, K., (1992). Chaos, CML focus issue 2, 279-367.
Lai, Y. C., Harrison, M. F., Frei, M. G., Osorio, I., (2003). Inability of Lyapunov Exponents to Predict Epileptic Seizures. Phys. Rev. Lett. 91, 068102. DOI: 10.1103/PhysRevLett.91.068102
Liu, Z., Chen, S., Hu, B., (1999). Coupled synchronization of spatiotemporal chaos. Phys. Rev. E 59, 2817-2821.
Lü, H., Hu, G., (2004). Propagation of desynchronous disturbances in synchronized chaotic one-way coupled map lattices. Phys. Rev. E 69, 036212. DOI: 10.1103/PhysRevE.69.036212
Meixner, M., Zoldi, S. M., Bose, S., Schöll, E., (2000). Karhunen-Loève local characterization of spatiotemporal chaos in a reaction-diffusion system. Phys. Rev. E 61, 1382-1385. DOI: 10.1103/PhysRevE.61.1382
Nicolis, G., Basios, V., Nicolis, C., (2004). Pattern formation and fluctuation-induced transitions in protein crystallization. J. Chem. Phys. 120, 7708-7719. DOI: 10.1063/1.1687339
O'Hern, C. S., Egolf, D. A., Greenside, H. S., (1996). Lyapunov spectral analysis of a nonequilibrium Ising-like transition. Phys. Rev. E 53, 3374-3386. DOI: 10.1103/PhysRevE.53.3374
Oprisan, S. A., (2002). An application of the least-squares method to system parameters extraction from experimental data. Chaos 12, 27 -32.
Pande, A., Pandit, R., (2000). Spatiotemporal chaos and nonequilibrium transitions in a model excitable medium. Phys. Rev. E 61, 6448-6460.
Qi, F., Hou, Z., Xin, H., (2003). Ordering chaos by random shortcuts. Rev. Lett. 91, 064102. DOI: 10.1103/PhysRevLett.91.064102
Sharma, A., Gupte, N., (2002). Spatiotemporal intermittency and scaling laws in inhomogeneous coupled map lattices. Phys. Rev. E 66, 036210. DOI: 10.1103/PhysRevE.66.036210
Tao, C., Zhang, Y., Du, G., Jiang, J. J., (2004). Estimating model parameters by chaos synchronization. Phys. Rev. E 69, 036204 DOI: 10.1103/PhysRevE.69.036204
Tran, D. M., (2001). Component mode synthesis methods using interface modes. Application to structures with cyclic symmetry. Comp. and Struct. 79, 209 -222. DOI: 10.1016/S0045-7949(00)00121-8
Turing, A. M., (1952). The Chemical Basis of Morphogenesis. Phil. Trans. Roy. Soc. B 237, 37-72. DOI: 10.1098/rstb.1952.0012
Tzenov, S. I., Davidson, R. C., (2003). Renormalization group reduction of the Hénon map and application to the transverse betatron motion in cyclic accelerators. New J. of Phys. 5, 67.1–67.13.
Wagner, C., Stoop, R., (2001). Optimized chaos control with simple limiters. Phys. Rev. E 63, 017201. DOI: 10.1103/PhysRevE.63.017201
Wang, Y., Wong, K-W, Xiao, D., (2011). Parallel hash function construction based on coupled map lattices. Communications in Nonlinear Science and Numerical Simulation 16, 2810-2821. DOI: 10.1016/j.cnsns.2010.10.001
Winfree, A. T., (1991). Varieties of spiral wave behavior: An experimentalist’s approach to the theory of excitable media. Chaos 1, 303-334. DOI: 10.1063/1.165844
Xi, H., Gunton, J. D., Viñals, J., (1993). Spiral defect chaos in a model of Rayleigh-Bénard convection. Phys. Rev. Lett. 71, 2030-2033 DOI: 10.1103/PhysRevLett.71.2030
Xu, Q., Sun, K., Cao, C., Zhu, C., (2019). A fast image encryption algorithm based on compressive sensing and hyperchaotic map. Optics and Lasers in Engineering 121, 203-214. DOI: 10.1016/j.optlaseng.2019.04.011
Yang, W., Ding, E-J, Ding, M., (1996). Universal scaling law for the largest Lyapunov exponent in coupled map lattices. Phys. Rev. Lett. 76, 1808-1811. DOI: 10.1103/PhysRevLett.76.1808
Zhang, W., Viñals, J., (1995). Secondary Instabilities and Spatiotemporal Chaos in Parametric Surface Waves. Phys. Rev. Lett. 74, 690-693. DOI: 10.1103/PhysRevLett.74.690
Zhang, Y-Q, Wang, X-Y, (2015). A new image encryption algorithm based on non-adjacent coupled map lattices. Applied Soft Computing 26, 10-20. DOI: 10.1016/j.asoc.2014.09.039