Kluyveromyces marxianus, sus aplicaciones en lactosuero

Palabras clave: Lactosuero, Kluyveromyces marxianus, bio-productos

Resumen

El lactosuero es un residuo de la industria láctea, generado principalmente en la producción de queso. Este residuo representa entre el 80 y 90% del volumen de leche utilizada para la producción de queso, el cual se caracteriza por su alto contenido orgánico, con la capacidad de contaminar ríos, lagos, suelos, entre otros, cuando es desechado sin tratamiento previo, lo cual lo convierte de interés ambiental. Sin embargo, el principal problema de la mayoría de las industrias queseras, es no contar con sistemas adecuados para su gestión, en gran medida por su costoso tratamiento. Ante la situación planteada, la alta carga orgánica del lactosuero tiene potencial de ser valorizada como una fuente de carbono renovable, principalmente por su contenido de lactosa. Este disacárido puede ser tratado con Kluyveromyces marxianus, levadura con capacidad de degradar lactosa y utilizarla en la producción de diferentes productos. El presente documento, es una revisión de los bio-productos generados a partir de lactosuero utilizando la levadura Kluyveromyces marxianus, con el objetivo de proporcionar información comparativa de resultados de pre-tratamientos realizados al lactosuero, rendimiento de productos y reducción de contenido orgánico.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abboud, M. M., Aljundi, I. H., Khleifat, K. M., & Dmour, S. (2010). Biodegradation kinetics and modeling of whey lactose by bacterial hemoglobin VHb-expressing Escherichia coli strain. Biochemical Engineering Journal, 48(2), 166-172. doi:10.1016/j.bej.2009.09.006

Alonso-Vargas, M., Téllez-Jurado, A., Gómez-Aldapa, C. A., Ramírez-Vargas, M. d. R., Conde-Báez, L., Castro-Rosas, J., & Cadena-Ramírez, A. (2022). Optimization of 2-Phenylethanol Production from Sweet Whey Fermentation Using Kluyveromyces marxianus. Fermentation, 8(2). doi:10.3390/fermentation8020039

Beniwal, A., Saini, P., Kokkiligadda, A., & Vij, S. (2018). Use of silicon dioxide nanoparticles for β-galactosidase immobilization and modulated ethanol production by co-immobilized K. marxianus and S. cerevisiae in deproteinized cheese whey. LWT - Food Science and Technology, 87, 553-561. doi:10.1016/j.lwt.2017.09.028

Bosso, A., Iglecias Setti, A. C., Tomal, A. B., Guemra, S., Morioka, L. R. I., & Suguimoto, H. H. (2019). Substrate consumption and beta-galactosidase production by Saccharomyces fragilis IZ 275 grown in cheese whey as a function of cell growth rate. Biocatalysis and Agricultural Biotechnology, 21. doi:10.1016/j.bcab.2019.101335

Carota, E., Crognale, S., D'Annibale, A., Gallo, A. M., Stazi, S. R., & Petruccioli, M. (2017). A sustainable use of Ricotta Cheese Whey for microbial biodiesel production. Science of the Total Environment, 584-585, 554-560. doi:10.1016/j.scitotenv.2017.01.068

Coelho Sampaio, F., da Conceição Saraiva, T. L., Dumont de Lima e Silva, G., Teles de Faria, J., Grijó Pitangui, C., Aliakbarian, B., . . . Converti, A. (2016). Batch growth of Kluyveromyces lactis cells from deproteinized whey: Response surface methodology versus Artificial neural network—Genetic algorithm approach. Biochemical Engineering Journal, 109, 305-311. doi:10.1016/j.bej.2016.01.026

Conde-Báez, L., López-Molina, A., Gómez-Aldapa, C., Pineda-Muñoz, C., & Conde-Mejía, C. (2019). Economic projection of 2-phenylethanol production from whey. Food and Bioproducts Processing, 115, 10-16. doi:10.1016/j.fbp.2019.02.004

Conde Báez, L., Castro Rosas, J., Villagómez Ibarra, J. R., Palma Quiroz, I., Páez Lerma, J. B., & Gómez Aldapa, C. A. (2017). Production of benzyl carbonyl (rose aroma) from whey and its effect on pollutant load removal. Environment, Development and Sustainability, 21(2), 609-619. doi:10.1007/s10668-017-0048-0

Cunha, M., Romaní, A., Carvalho, M., & Domingues, L. (2017). Boosting bioethanol production from Eucalyptus wood by whey incorporation. Bioresource Technology.

Das, B., Sarkar, S., Maiti, S., & Bhattacharjee, S. (2016). Studies on production of ethanol from cheese whey using Kluyveromyces marxianus. Materials Today: Proceedings, 3(10), 3253-3257. doi:10.1016/j.matpr.2016.10.006

Dessì, P., Asunis, F., Ravishankar, H., Cocco, F. G., De Gioannis, G., Muntoni, A., & Lens, P. N. L. (2020). Fermentative hydrogen production from cheese whey with in-line, concentration gradient-driven butyric acid extraction. International Journal of Hydrogen Energy, 45(46), 24453-24466. doi:10.1016/j.ijhydene.2020.06.081

Ding, H., Inoue, S., Ljubimov, A. V., Patil, R., Portilla-Arias, J., Hu, J., . . . Ljubimova, J. Y. (2010). Inhibition of brain tumor growth by intravenous poly (B-L-malic acid) nanobioconjugate with pH-dependent drug release. Proc Natl Acad Sci U S A, 107(42), 18143-18148. doi:10.1073/pnas.1003919107

Dragone, G., Mussatto, S. I., Oliveira, J. M., & Teixeira, J. A. (2009). Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chemistry, 112(4), 929-935. doi:10.1016/j.foodchem.2008.07.005

Ergüder, T. H., Tezel, U., Güven, E., & Demirer, G. N. (2001). Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Management, 21 (7), 643-650. doi:10.1016/s0956-053x(00)00114-8

Escalante, H., Castro, L., Amaya, M. P., Jaimes, L., & Jaimes-Estevez, J. (2018). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Management, 71, 711-718. doi:10.1016/j.wasman.2017.09.026

Etschmann, M. M., Bluemke, W., Sell, D., & Schrader, J. (2002). Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol, 59(1), 1-8. doi:10.1007/s00253-002-0992-x

Gantumur, M. A., Sukhbaatar, N., Qayum, A., Bilawal, A., Tsembeltsogt, B., Oh, K. C., . . . Hou, J. (2022). Characterization of major volatile compounds in whey spirits produced by different distillation stages of fermented lactose-supplemented whey. Journal Dairy Science, 105(1), 83-96. doi:10.3168/jds.2021-20748

Garg, S. K., & Jain, A. (1995). Fermentative production of 2,3-butanediol: a review. Bioresource Technology, 51, 103-109. doi:10.1016/0960-8524(94)00136-O

Ghasemi, M., Narafpour, G., Rahimnejad, M., Aeineh, B. P., Sedighi, M., & Hashemiyeh, B. (2009). Effect of different media on production of lactic acid from whey by Lactobacillus bulgaricus. African Journal of Biotechnology, 8 (1), 081-084.

Gómez-Aldapa, C. A., Castro-Rosas, J., López-Molina, A., Conde-Mejía, C., Pineda-Muñoz, C. F., Jiménez-González, A., . . . Conde-Báez, L. (2021). Best Conditions for the Production of Natural Isopentyl Acetate (Banana Aroma) from Cheese Industry Waste: An Experimental Precursor Approach. Processes, 9(11). doi:10.3390/pr9111880

González-Siso, M. I. (1996). The biotechnological utilization of cheese whey: a review. Bioresource Technology, 57, 1-11. doi:10.1016/0960-8524(96)00036-3

Grba, S., Stehlik-Tomas, V., Stanzer, D., Vahèiæ, N., & Škrlin, A. (2002). Selection of yeast strain Kluyveromyces marxianus for alcohol and biomass production on whey. Chemical and Biochemical Engineering Quarterly, 16 (1), 13-16.

Guneser, O., Karagul-Yuceer, Y., Wilkowska, A., & Kregiel, D. (2016). Volatile metabolites produced from agro-industrial wastes by Na-alginate entrapped Kluyveromyces marxianus. Brazilian Journal of Microbiology, 47(4), 965-972. doi:10.1016/j.bjm.2016.07.018

Guo, X., Wang, Y., Guo, J., Wang, Q., Zhang, Y., Chen, Y., . . . Xiao, D. (2017). Efficient production of 2,3-butanediol from cheese whey powder (CWP) solution by Klebsiella pneumoniae through integrating pulsed fed-batch fermentation with a two-stage pH control strategy. Fuel, 203, 469-477. doi:10.1016/j.fuel.2017.04.138

Hensing, M. C. M., Rouwenhorst, R. J., Heijnen, J. J., van Dijken, J. P., & Pronk, J. T. (1995). Physiological and technological aspects of large-scale heterologous protein production with yeasts. Antonie van Leeuwenhoek, 67, 261-279. doi:10.1007/BF00873690

Hua, D., & Xu, P. (2011). Recent advances in biotechnological production of 2-phenylethanol. Biotechnology Advances, 29(6), 654-660. doi:10.1016/j.biotechadv.2011.05.001

INEGI. (2019). Estadisticas del Sector Lácteo. Retrieved from https://www.canilec.org.mx/estadisticas%20lacteos%202019.pdf

Jalil, R., & Nixona, J. R. (1990). Biodegradable poly (lactic acid) and poly (lactide-co-glycolide) microcapsule:s problems associated with preparative techniques and release properties. Microencapsulation: Micro and Nano Carriers, 7 (3), 297-325. doi:10.3109/02652049009021842

Jelen, P. (2002). Whey processing Utilization and Products. In Encyclopedia of Dairy Sciences (pp. 2739–2745).

Ji, X. J., Huang, H., & Ouyang, P. K. (2011). Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnology Advances, 29(3), 351-364. doi:10.1016/j.biotechadv.2011.01.007

Jin, Y., Parashar, A., Mason, B., & Bressler, D. C. (2016). Simultaneous hydrolysis and co-fermentation of whey lactose with wheat for ethanol production. Bioresource Technology, 221, 616-624. doi:10.1016/j.biortech.2016.09.063

Kadyan, S., Rashmi, H. M., Pradhan, D., Kumari, A., Chaudhari, A., & Deshwal, G. K. (2021). Effect of lactic acid bacteria and yeast fermentation on antimicrobial, antioxidative and metabolomic profile of naturally carbonated probiotic whey drink. Lwt, 142. doi:10.1016/j.lwt.2021.111059

Lech, M. (2020). Optimisation of protein-free waste whey supplementation used for the industrial microbiological production of lactic acid. Biochemical Engineering Journal, 157. doi:10.1016/j.bej.2020.107531

Ling, C. (2008). Whey to Ethanol: A Biofuel Role for Dairy Cooperatives? Washington, DC.

Liu, J. J., Zhang, G. C., Oh, E. J., Pathanibul, P., Turner, T. L., & Jin, Y. S. (2016). Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose. Journal of Biotechnology, 234, 99-104. doi:10.1016/j.jbiotec.2016.07.018

Lobs, A. K., Schwartz, C., & Wheeldon, I. (2017). Genome and metabolic engineering in non-conventional yeasts: Current advances and applications. Synthetic and Systems Biotechnology, 2(3), 198-207. doi:10.1016/j.synbio.2017.08.002

Lukjanenko, J., Kovtuna, K., Grube, M., & Vigants, A. (2015). Enhancement of protein content in “(“Kluyveromyces marxianus”)” biomass produced on cheese whey lactose. Journal of Biotechnology, 208. doi:10.1016/j.jbiotec.2015.06.232

Ma, C., Wang, A., Qin, J., Li, L., Ai, X., Jiang, T., . . . Xu, P. (2009). Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol, 82(1), 49-57. doi:10.1007/s00253-008-1732-7

Madureira, A. R., Pereira, C. I., Gomes, A. M. P., Pintado, M. E., & Xavier Malcata, F. (2007). Bovine whey proteins – Overview on their main biological properties. Food Research International, 40(10), 1197-1211. doi:10.1016/j.foodres.2007.07.005

Maguire, N. A. P., Kuhmann, T., Gerlach, D., Fan, R., & Czermak, P. (2022). Statistical mixture designs for media development with agro-industrial residues – Supporting the circular bioeconomy. EFB Bioeconomy Journal, 2. doi:10.1016/j.bioeco.2022.100023

Martinez-Avila, O., Sanchez, A., Font, X., & Barrena, R. (2018). Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: current state and perspectives. Applied Microbiology and Biotechnology, 102(23), 9991-10004. doi:10.1007/s00253-018-9384-8

Mounier, J., & Coton, M. (2022). Yeast and molds-Kluyveromyces spp. In Encyclopedia of Dairy Sciences (pp. 569-574).

Murari, C. S., Machado, W. R. C., Schuina, G. L., & Del Bianchi, V. L. (2019). Optimization of bioethanol production from cheese whey using Kluyveromyces marxianus URM 7404. Biocatalysis and Agricultural Biotechnology, 20. doi:10.1016/j.bcab.2019.101182

Nasseri, A. T., Rasoul-Ami, S., Morowvat, M. H., & Ghasemi, Y. (2011). Single Cell Protein: Production and Process. American Journal of Food Technology, 6(2), 103-116. doi:10.3923/ajft.2011.103.116

National Library of Medicine National Center for Biotechnology Information. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/Isoamyl-acetate

NOM-002-SEMARNAT-1996, Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales a los sistemas de alcantarillado urbano o municipal. https://www.profepa.gob.mx/innovaportal/file/3290/1/nom-001-semarnat-1996.pdf.

Ozmihci, S., & Kargi, F. (2007). Effects of feed sugar concentration on continuous ethanol fermentation of cheese whey powder solution (CWP). Enzyme and Microbial Technology, 41(6-7), 876-880. doi:10.1016/j.enzmictec.2007.07.015

Panesar, P., Kennedy, J., Gandhi, D., & Bunko, K. (2007). Bioutilisation of whey for lactic acid production. Food Chemistry, 105(1), 1-14. doi:10.1016/j.foodchem.2007.03.035

Panesar, P., & Kennedy, J. F. (2012). Biotechnological approaches for the value addition of whey. Critical Reviews in Biotechnology, 32(4), 327-348. doi:10.3109/07388551.2011.640624

Pasotti, L., De Marchi, D., Casanova, M., Massaiu, I., Bellato, M., Cusella De Angelis, M. G., . . . Magni, P. (2020). Engineering endogenous fermentative routes in ethanologenic Escherichia coli W for bioethanol production from concentrated whey permeate. New BIOTECHNOLOGY, Journal Pre-proof. doi:10.1016/j.nbt.2020.02.004

Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: A review. Journal of Environmental Management, 110, 48-68. doi:10.1016/j.jenvman.2012.05.018

Qiu, Z., & Jiang, R. (2017). Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7. Biotechnol Biofuels, 10, 125. doi:10.1186/s13068-017-0806-0

Remón, J., García, L., & Arauzo, J. (2016). Cheese whey management by catalytic steam reforming and aqueous phase reforming. Fuel Processing Technology, 154, 66-81. doi:10.1016/j.fuproc.2016.08.012

Risner, D., Shayevitz, A., Haapala, K., Meunier-Goddik, L., & Hughes, P. (2018). Fermentation and distillation of cheese whey: Carbon dioxide-equivalent emissions and water use in the production of whey spirits and white whiskey. J Dairy Sci, 101(4), 2963-2973. doi:10.3168/jds.2017-13774

Risner, D., Tomasino, E., Hughes, P., & Meunier-Goddik, L. (2019). Volatile aroma composition of distillates produced from fermented sweet and acid whey. J Dairy Sci, 102(1), 202-210. doi:10.3168/jds.2018-14737

Rodrigues, B., Lima-Costa, M. E., Constantino, A., Raposo, S., Felizardo, C., Goncalves, D., . . . Peinado, J. M. (2016). Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey. Enzyme and Microbial Technology, (92).

Saini, P., Beniwal, A., Kokkiligadda, A., & Vij, S. (2017). Evolutionary adaptation of Kluyveromyces marxianus strain for efficient conversion of whey lactose to bioethanol. Process Biochemistry, (62).

Sampaio, F. C., de Faria, J. T., da Silva, M. F., de Souza Oliveira, R. P., & Converti, A. (2020). Cheese whey permeate fermentation by Kluyveromyces lactis: a combined approach to wastewater treatment and bioethanol production. Environmental Technology, 41(24), 3210-3218. doi:10.1080/09593330.2019.1604813

Sar, T., Harirchi, S., Ramezani, M., Bulkan, G., Akbas, M. Y., Pandey, A., & Taherzadeh, M. J. (2022). Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. Science of the Total Environment, 810, 152253. doi:10.1016/j.scitotenv.2021.152253

Smith, W. P. (1996). Epidermal and dermal effects of topical lactic acid. J. American Academy Derm, 35 (3–1), 388–391. doi:10.1016/s0190-9622(96)90602-7

Trigueros, D. E. G., Fiorese, M. L., Kroumov, A. D., Hinterholz, C. L., Nadai, B. L., & Assunção, G. M. (2016). Medium optimization and kinetics modeling for the fermentation of hydrolyzed cheese whey permeate as a substrate for Saccharomyces cerevisiae var. boulardii. Biochemical Engineering Journal, 110, 71-83. doi:10.1016/j.bej.2016.02.014

Xia, J., He, J., Xu, J., Liu, X., Qiu, Z., Xu, N., & Su, L. (2021). Direct conversion of cheese whey to polymalic acid by mixed culture of Aureobasidium pullulans and permeabilized Kluyveromyces marxianus. Bioresourse Technology, 337, 125443. doi:10.1016/j.biortech.2021.125443

Yadav, J. S., Bezawada, J., Elharche, S., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2014). Simultaneous single-cell protein production and COD removal with characterization of residual protein and intermediate metabolites during whey fermentation by K. marxianus. Bioprocess Biosyst Eng, 37(6), 1017-1029. doi:10.1007/s00449-013-1072-6

Yadav, J. S., Yan, S., Ajila, C. M., Bezawada, J., Tyagi, R. D., & Surampalli, R. Y. (2016). Food-grade single-cell protein production, characterization and ultrafiltration recovery of residual fermented whey proteins from whey. Food and Bioproducts Processing, 99, 156-165. doi:10.1016/j.fbp.2016.04.012

Zhao, W., Shu, Q., He, G., & Qihe, C. (2020). Reducing antigenicity of bovine whey proteins by Kluyveromyces marxianus fermentation combined with ultrasound treatment. Food Chem, 311, 125893. doi:10.1016/j.foodchem.2019.125893

Zhu, Y.-J., Zhou, H.-T., Hu, Y.-H., Tang, J.-Y., Su, M.-X., Guo, Y.-J., . . . Liu, B. (2011). Antityrosinase and antimicrobial activities of 2-phenylethanol, 2-phenylacetaldehyde and 2-phenylacetic acid. Food Chemistry, 124(1), 298-302. doi:10.1016/j.foodchem.2010.06.036

Publicado
2023-01-05
Cómo citar
Hernández-Cruz, M. Ángel, Vázquez-Cuevas, G. M., Castro-Rosas, J., Hernández-Juárez, M., & Gómez-Aldapa, C. A. (2023). Kluyveromyces marxianus, sus aplicaciones en lactosuero. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(20), 1-9. https://doi.org/10.29057/icbi.v10i20.9362

Artículos más leídos del mismo autor/a