Optims conditions for synthetize conductor carbon at air atmosphere

Keywords: Finete element analysis, Air atmosphere, Carbonization, Pyrolysis, Simulation

Abstract

This document describes the procedure to find the optimal carbonization conditions of orange peel (CN) in an air atmosphere. The carbonization conditions were simulated through finite element analysis in the ANSYS Mechanical software, varying temperatures (600, 700, 800, 900 and 1000°C), muffle chamber sizes, furnace resistance type, and number of arrangements in the furnace process. Thermogravimetric analysis (TGA) was performed showing that CN in contact with air is 99% consumed at 600°C. The resistance measurement showed that the most conductive samples were those subjected to 1000°C in the muffle. Cyclic voltammetry (VC) provided the value of the capacitance of the carbons. The maximum value being 272 F/g found in the samples submitted in a cylindrical resistance muffle with two arrangements inside. The capacitance values obtained for these carbons place them within the range of capacitances handled in the literature for supercapacitor electrode applications.

Downloads

Download data is not yet available.

Author Biography

Ernesto Cuahutemóc Herbert-López, Universidad Politécncia de Victoria
Mechatronic Engineer from the Polytechnic University of Victoria. Student of the academic master's program in Engineering at the Universidad Politécnica de Victoria.

References

Ahmed, S., Rafat, M., & Ahmed, A. (2018). Nitrogen doped activated carbon derived from orange peel for supercapacitor application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(3). https://doi.org/10.1088/2043-6254/aad5d4

Arias-Niquepa, R. A., Prías-Barragán, J. J., Ariza-Calderón, H., & Rodríguez-García, M. E. (2019). Activated Carbon Obtained from Bamboo: Synthesis, Morphological, Vibrational, and Electrical Properties and Possible Temperature Sensor. Physica Status Solidi (A) Applications and Materials Science, 216(4), 1–11. https://doi.org/10.1002/pssa.201800422

Babu, B. V., & Chaurasia, A. S. (2004). Pyrolysis of biomass: Improved models for simultaneous kinetics and transport of heat, mass and momentum. Energy Conversion and Management, 45(9–10), 1297–1327. https://doi.org/10.1016/j.enconman.2003.09.013

Brito, G. M., Cipriano, D. F., Schettino, M. Â., Cunha, A. G., Coelho, E. R. C., & Checon Freitas, J. C. (2019). One-step methodology for preparing physically activated biocarbons from agricultural biomass waste. Journal of Environmental Chemical Engineering, 7(3), 103113. https://doi.org/10.1016/j.jece.2019.103113

Choi, N. S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y. K., Amine, K., Yushin, G., Nazar, L. F., Cho, J., & Bruce, P. G. (2012). Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie - International Edition, 51(40), 9994–10024. https://doi.org/10.1002/anie.201201429

Dujearic-Stephane, K., Panta, P., Shulga, Y. M., Kumar, A., Gupta, M., & Kumar, Y. (2020). Physico-chemical characterization of activated carbon synthesized from Datura metel’s peels and comparative capacitive performance analysis in acidic electrolytes and ionic liquids. Bioresource Technology Reports, 100516. https://doi.org/10.1016/j.biteb.2020.100516

Edy, D. L., & Widiyanti. (2020). Analysis of heat load in coffee bean drying oven room. Journal of Physics: Conference Series, 1700(1). https://doi.org/10.1088/1742-6596/1700/1/012036

García, R., Pizarro, C., Lavín, A.G. & Bueno, J.L., (2013). Biomass Proximate Analysis using Thermogravimetry, Bioresource Technology doi: http://dx.doi.org/10.1016/j.biortech.2013.03.197

Gualous, H., Bouquain, D., Berthon, A., & Kauffmann, J. M. (2003). Experimental study of supercapacitor serial resistance and capacitance variations with temperature. Journal of Power Sources, 123(1), 86–93. https://doi.org/10.1016/S0378-7753(03)00527-5

Gunasekaran, S. S., & Badhulika, S. (2022). Effect of pH and activation on macroporous carbon derived from cocoa-pods for high performance aqueous supercapacitor application. Materials Chemistry and Physics, 276,125399. https://doi.org/10.1016/J.MATCHEMPHYS.2021.125399

Hesas, R. H., Arami-Niya, A., Ashri, W. M., Daud, W., & Sahu, J. N. (2013). Preparation and Characterization of Activated Carbon from Apple Waste by Microwave-Assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption. Bioresources, 8(2), 2950-2966. DOI: 10.15376/biores.8.2.2950-2966

Kaipannan, S., & Marappan, S. (2019). Fabrication of 9.6 V High-performance Asymmetric Supercapacitors Stack Based on Nickel Hexacyanoferrate-derived Ni(OH)2 Nanosheets and Bio-derived Activated Carbon. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-018-37566-8

Krupka, J., & Strupinski, W. (2010). Measurements of the sheet resistance and conductivity of thin epitaxial graphene and SiC films. Applied Physics Letters, 96(8). https://doi.org/10.1063/1.3327334

Li, X. R., Jiang, Y. H., Wang, P. Z., Mo, Y., Lai, W. De, Li, Z. J., Yu, R. J., Du, Y. T., Zhang, X. R., & Chen, Y. (2020). Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors. New Carbon Materials, 35(3), 232–243. https://doi.org/10.1016/S1872-5805(20)60487-5

Meenatchi, T., Priyanka, V., Subadevi, R., Liu, W. R., Huang, C. H., & Sivakumar, M. (2021). Probe on hard carbon electrode derived from orange peel for energy storage application. Carbon Letters, 31(5), 1033–1039. https://doi.org/10.1007/s42823-020-00217-y

Merlet, C., Rotenberg, B., Madden, P. A., Taberna, P. L., Simon, P., Gogotsi, Y., & Salanne, M. (2012). On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 11(4), 306–310. https://doi.org/10.1038/nmat3260

Miranda, R., Bustos-Martinez, D., Blanco, C. S., Villarreal, M. H. G., & Cantú, M. E. R. (2009). Pyrolysis of sweet orange (Citrus sinensis) dry peel. Journal of Analytical and Applied Pyrolysis, 86(2), 245–251. https://doi.org/10.1016/j.jaap.2009.06.001

Pichler, M., Haddadi, B., Jordan, C., Norouzi, H., & Harasek, M. (2021). Influence of particle residence time distribution on the biomass pyrolysis in a rotary kiln. Journal of Analytical and Applied Pyrolysis, 158. https://doi.org/10.1016/j.jaap.2021.105171

Portet, C., Taberna, P. L., Simon, P., Flahaut, E., & Laberty-Robert, C. (2005). High power density electrodes for Carbon supercapacitor applications. Electrochimica Acta, 50(20), 4174–4181. https://doi.org/10.1016/j.electacta.2005.01.038

Raghu, M. S., Parashuram, L., Yogesh Kumar, K., Prasanna, B. P., Rao, S., Krishnaiah, P., Prashanth, K. N., Pradeep Kumar, C. B., & Alrobei, H. (2020). Facile green synthesis of boroncarbonitride using orange peel; Its application in high-performance supercapacitors and detection of levodopa in real samples. Materials Today Comunications, 24(1), 1–8. https://doi.org/10.1016/j.mtcomm.2020.101033

Saini, S., Chand, P., & Joshi, A. (2021). Biomass derived carbon for supercapacitor applications : Review. Journal of Energy Storage, 39, 102646. https://doi.org/10.1016/j.est.2021.102646

Shanmuga Priya, M., Divya, P., & Rajalakshmi, R. (2020). A review status on characterization and electrochemical behaviour of biomass derived carbon materials for energy storage supercapacitors. Sustainable Chemistry and Pharmacy, 16, 100243. https://doi.org/10.1016/j.scp.2020.100243

Sheng, Z., Lin, X., Wei, H., Zhang, Y., Tian, Z., Wang, C., Xu, D., & Wang, Y. (2021). Green synthesis of nitrogen-doped hierarchical porous carbon nanosheets derived from polyvinyl chloride towards high-performance supercapacitor. Journal of Power Sources, 515, 230629. https://doi.org/10.1016/J.JPOWSOUR.2021.230629

Shi, B., Xu, L., Zhang, J., Meng, J., Wang, X., Bu, C., & Liu, C. (2022). Template-assisted synthesis of nitrogen-doped porous carbon derived from bean dregs for high-performance supercapacitor. Asia-Pacific Journal of Chemical Engineering, 17(4), e2802. https://doi.org/10.1002/APJ.2802

Súarez-Velázquez, G. G., Pech-Rodríguez W. J., Ramírez de León, J. A., Castañón-Rodríguez J. F., Meléndez-González, P. C. & Galaviz-Pérez J. A. (2022) Orange peel as substrate to synthesize conductive carbon nanostructures by a green thermal process, Revista Internacional de Contaminación Ambiental, 38, 34–47, [Online]. https://doi.org/10.20937/RICA.54242

Súarez-Velázquez, G. G., J. A. Ramírez de León, J. F. Castañón-Rodríguez, J. A. Galavíz-Pérez, and P. C. Meléndez-González. 2021. Valorization of Albedo Orange Peel Waste to Develop Electrode Materials in Supercapacitors for the Electric Industry. 2021, 3022815. https://doi.org/10.1155/2021/3022815

Xie, K., Xia, K., Ding, X., Fang, L., Liu, X., & Zhang, X. (2022). Facile preparation of 3D porous agar-based heteroatom-doped carbon aerogels for high-energy density supercapacitors. RSC Advances, 12 (32), 20975–20982. https://doi.org/10.1039/d2ra03685a

Xu, C., Hu, Z., Wang, X., Wang, C., Huang, D., & Qian, Y. (2021). Facile Preparation of Hierarchical Porous Carbon from Orange Peels for High-Performance Supercapacitor. Int. J. Electrochem. Sci., 16. https://doi.org/10.20964/2021.03.07

Yu, J., Wu, J., Yang, Z., Cai, J., & Zhang, Z. (2020). A cheese-shaped bio-carbon for high performance supercapacitors prepared from Juncus effuses. L. Journal of Energy Storage, 30, 1–7. https://doi.org/10.1016/j.est.2020.101531

Zhang, L. L., and Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520–2531. https://doi.org/10.1039/b813846j

Published
2023-07-05
How to Cite
Suárez-Velázquez, G. G., Herbert-López, E. C., & Burgos-Quiroz, M. G. (2023). Optims conditions for synthetize conductor carbon at air atmosphere. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(21), 71-77. https://doi.org/10.29057/icbi.v11i21.10364