Doping of silicon phthalocyanine based organic semiconductor

Keywords: Organic semiconductor, Silicon phthalocyanine, Film, Optical properties, Electrical properties

Abstract

Traditionally, organic compounds have been considered electrical insulators. However, the study of organic semiconductors has led to the development of alternatives to semiconductor silicon, based on π-conjugated molecules such as phthalocyanines. In the present study, chemical doping was carried on silicon phthalocyanine dichloride (SiPcCl2), with a bromide Br-1 substituted dienynoic acid (BrDAc). Resulting doped organic semiconductor was high-vacuum sublimated and deposited onto different substrates as a means to conduct structural, optical, and electric characterization as thin film. For structural characterization, infrared spectroscopy was carried out, and optical parameters were reviewed, such as transmittance and absorbance, obtained by ultraviolet-visible spectroscopy. From these results, energy gaps were determined making use of Tauc’s model. Finally, simple electrical devices: ITO/SiPcCl2-BrDAc/Ag were fabricated and electrically characterized, to assess the behavior when thin semiconductor film SiPcCl2-BrDAc is part of a simple device.

Downloads

Download data is not yet available.

References

Al-Muntaser, A.A., El-Nahass, M.M., Oraby, A.H., Meikhail, M.S., Zeyada, H.M., (2018). Structural and optical characterization of thermally evaporated nanocrystalline 5,10,15,20-tetraphenyl-21H,23Hporphine manganese (III) chloride thin films, Optik 167 204–217. DOI: 10.1016/j.ijleo.2018.04.041

Ballinas‑Indili, R., Sánchez‑Vergara, M.E., Toscano, R.A., Álvarez‑Toledano, C., (2020). Synthesis, Doping and Characterization of new Molecular Semiconductors Containing (2E, 4Z)-5, 7-diphenylhepta-2, 4-dien-6-ynoic acids, J Inorg. Organomet. Polym. 30 2509–2519. DOI: 10.1007/s10904-019-01430-7

Cranston, R.R., Lessard, B.H., (2021). Metal phthalocyanines: thin-film formation, microstructure, and physical properties, RSC. Adv. 11 (35) 21716–21737. DOI: 10.1039/D1RA03853B

Darwish, A.A.A., Helali, S., Qashou, S.I., Yahia, I.S., El-Zaidia, E.F.M., (2021). Studying the surface morphology, linear and nonlinear optical properties of manganese (III) phthalocyanine chloride/FTO films, Phys. B: Condens. Matter 622 413355. DOI: 10.1016/j.physb.2021.413355

Dongol, M., El-Nahass, M.M., El-Denglawey, A., Elhady, A.F., Abuelwafa, A.A., (2012). Optical Properties of Nano 5,10,15,20-Tetraphenyl-21H,23H-Prophyrin Nickel (II) Thin Film, Curr. Appl. Phys. 12 (4) 1178–1184. DOI: 10.1016/j.cap.2012.02.051

Dou, L., Liu, Y., Hong, Z., Li, G., Yang, Y., (2015). Low-bandgap near-IR conjugated polymers/molecules for organic electronics, Chem. Rev. 115 (23) 12633–12665. DOI: 10.1021/acs.chemrev.5b00165

El-Mallah, H.M., El Salam, M. A., ELesh, E., El- Damhogi, D.G., (2020). Thermal annealing effect on the structural and optical characteristics of silicon phthalocyanine dichloride thin films, Optik, 200, 163459. DOI: 10.1016/j.ijleo.2019.163459

El-Nahass, M.M., Abd-El-Rahman, K.F., Al-Ghamdi, A.A., Asiri, A.M., (2014). Optical properties of thermally evaporated tinphthalocyanine dichloride thin films, SnPcCl2, Phys. B Condens. Matter. 344 (1–4) 398–406. DOI: 10.1016/j.physb.2003.10.019

El-Nahass, M.M., Farag, A.M., Abd-El-Rahman, K.F., Darwish, A.A.A., (2005) Dispersion studies and electronic transitions in nickel phthalocyanine thin films, Opt. Laser Technol. 37 (7) 513–523. DOI: 10.1016/j.optlastec.2004.08.016

Fazal, T., Iqbal, S., Shah, M., Ismail, B., Shaheen, N., Alrbyawi, H., Al-Anazy, M. M., Elkaeed, E. B., Somaily, H. H., Pashameah, R. A., Alzahrani, E., Farouk, A.-E., (2022). Improvement in Optoelectronic Properties of Bismuth Sulphide Thin Films by Chromium Incorporation at the Orthorhombic Crystal Lattice for Photovoltaic Applications. Molecules, 27 6419. DOI: 10.3390/molecules27196419

Green, M. A., Dunlop, E. D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G.,Hao, X., (2023). Solar cell efficiency tables (version 62), Prog. Photovolt. Res. Appl., 31 (7) 651–663. DOI:10.1002/pip.3726

Iwatsu, F., (1988). Size effects on the .alpha.-.beta. transformation of phthalocyanine crystals, J. Phys. Chem., 92 (6) 1678–1681. DOI: 10.1021/j100317a057

Joyner, R.D., Kenney, M.E., (1962). Phthalocyaninosilicon compounds, Inorg. Chem. 1 (2) 236–238. DOI: 10.1021/ic50002a008

Kendall, D.N., (1953). dentification of Polymorphic Forms of Crystals by Infrared Spectroscopy, Anal. Chem. 25 (3) 382–389. DOI: 10.1021/ac60075a002

Laidani, N., Bartali, R., Gottardi, G., Anderle, M., Cheyssac, P., (2008). Optical absorption parameters of amorphous carbon films from forouhi-bloomer and tauc-lorentz models: a comparative study, J. Phys. Condens. Matter 20 (1) 015216. DOI:10.1088/0953-8984/20/01/015216

Ling, H., Liu, S., Zheng, Z., Yan, F., (2018). Organic flexible electronics. Small Methods 2 (10), 1800070. DOI: 10.1002/smtd.201800070

Lüssem, B., Riede, M., Leo, K., (2012). Doping of organic semiconductors, Phys. Status Solidi A. 210 (1) 1–232. DOI: 10.1002/pssa.201228310

Manousiadis, P.P., Yoshida, K., Turnbull, G.A., Samuel. I.D.W., (2020). Organic semiconductors for visible light communications. Phil. Trans. R. Soc. A378, 20190186. DOI:10.1098/rsta.2019.0186

McKeown, N.B., (1998). Phthalocyanine materials: synthesis, structure and function, Cambridge university press, Inglaterra, pp. 2–7.

Mitra, K., Hartman, M.C., (2021). Silicon phthalocyanines: synthesis and resurgent applications, Org. Biomol. Chem. 19 (6) 1168–1190. DOI: 10.1039/D0OB02299C

Mok, T.M., O'Leary, S.K., (2007). the dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the film thickness: αl Experimental limitations and the impact of curvature in the Tauc and Cody plots, J. Appl. Phys. 102 (11) 113525. DOI:10.1063/1.2817822

Newman, C.R., Frisbie, C.D., Da Silva Filho, D.A., Brédas, J-L., Ewbank, P.C., Mann, K.R., (2004). Introduction to organic thin film transistors and design of n-channel organic semiconductors, Chem. Mater. 16 (23) 4436–4451. DOI: 10.1021/cm049391x

Özçeșmeci, M., Nar, I., Hamuryudan, E., (2014). Synthesis and electrochemical and spectroelectrochemical characterization of chloromanganese(III) phthalocyanines, Turk. J. Chem. 38 (6) 1064–1072. DOI: 10.3906/kim-1405-43

Rodríguez-Gómez, A., Sánchez-Hernández, C.M., Fleitman-Levin, I., Arenas-Alatorre, J., Alonso-Huitrón, J.C., Sánchez-Vergara, M.E., (2014). Optical absorption and visible photoluminescence from thin films of silicon phthalocyanine derivatives, Materials 7 (9) 6585–6603. DOI: 10.3390/ma7096585

Seoudi, R., El-Bahy, G.S., El-Sayed, Z.A., (2005). FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes, J. Mol. Struct. 753 (1–3) 119–126. DOI: 10.1016/j.molstruc.2005.06.003

Tauc, J., (1968). Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull. 3 (2) 37–46. DOI: 10.1016/0025-5408(68)90023-8

Torres, T., (2006). From subphthalocyanines to subporphyrins, Angew. Chem. Int. Ed. 45 (18) 2834–2837. DOI: 10.1002/anie.200504265

Touka, N., Benelmadjat, H., Boudine, B., Halimi, O., Sebais, M., (2013). Copper phthalocyanine nanocrystals embedded into polymer host: Preparation and structural characterization, J. Assoc. Arab Univ. Basic Appl. Sci. 13 (1) 52–56. DOI: 10.1016/j.jaubas.2012.03.002

Tsiper, E.V., Soos, Z.G., Gao, W., Kahn, A., (2002). Electronic polarization at surfaces and thin films or organic molecular crystals: PTCDA, Chem. Phys. Lett. 360 (1–2) 47–52. DOI: 10.1016/S00092614(02)007

Zeyada, H.M., El-Nahass, M.M., El-Menyawy, E.M., El-Sawah, A.S., (2015). Electrical and photovoltaic characteristics of indium phthalocyanine

chloride/p-Si solar cell, Synth. Met. 207 46–53. DOI: 10.1016/j.synthmet.2015.06.008

Published
2023-11-30
How to Cite
Sandoval-Plata, E. I., Ballinas-Indili, R., Álvarez-Toledano, C., & Sánchez-Vergara, M. E. (2023). Doping of silicon phthalocyanine based organic semiconductor. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial4), 55-61. https://doi.org/10.29057/icbi.v11iEspecial4.11368