Structural, morphological and optical characterization of Ag, Cu and Ag-Cu/TiO2-NTs nanomaterials

Keywords: Ag nanoparticles, TiO2 nanotubes, Antifungal properties, vapor phase impregnation

Abstract

In the present work we report the structural, morphological, and optical characterization of Ag, Cu and Ag-Cu nanoparticles deposited on TiO2 nanotubes by the vapor phase impregnation technique. The TiO2 nanotubular support has a tetragonal crystalline structure corresponding to the anatase phase, which is preserved by incorporating the metal particles. Only materials with Ag, peaks attributed to Ag0 are observed and those containing Cu are introduced into the crystal lattice of TiO2 in a substitutional doping. The Ag nanoparticles present a high dispersion and an average size of 3.1 nm. The general effect of metal particles is the increased optical absorption at (550 nm) and the incipient appearance of an absorption edge for those containing Cu. Given the known antimicrobial properties of Ag- and Cu-containing particles, the materials obtained in this work were tested with growth inhibitors of the fungus Colletotrichum gloesporoides.

Downloads

Download data is not yet available.

References

Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A., & Ammar, R. A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3(3), 135–140. https://doi.org/10.1016/j.arabjc.2010.04.008

Cortes-Jácome, M. A., Morales, M., Angeles Chavez, C., Ramírez-Verduzco, L. F., López-Salinas, E., & Toledo-Antonio, J. A. (2007). WOx/TiO2 catalysts via titania nanotubes for the oxidation of dibenzothiophene. Chemistry of Materials, 19(26), 6605–6614. https://doi.org/10.1021/cm702010k

De Almeida, A. S. F., Corrêa Junior, A., & Bentes, J. L. da S. (2021). Synthesis of silver nanoparticles (Agnps) by fusarium concolor and inhibition of plant pathogens. Summa Phytopathologica, 47(1), 9–15. https://doi.org/10.1590/0100-5405/235097

Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of titanium oxide nanotube. Langmuir, 14(12), 3160–3163. https://doi.org/10.1021/la9713816

Kokila, G. N., Mallikarjunaswamy, C., & Ranganatha, V. L. (2022). A review on synthesis and applications of versatile nanomaterials. In Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2022.2081189

Olea, A. F., Bravo, A., Martínez, R., Thomas, M., Sedan, C., Espinoza, L., Zambrano, E., Carvajal, D., Silva-Moreno, E., & Carrasco, H. (2019). Antifungal activity of eugenol derivatives against Botrytis cinerea. Molecules. https://doi.org/10.3390/molecules24071239

Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W., & Ul Hasan, M. M. (2010). Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology, 60(1), 75–80. https://doi.org/10.1007/s13213-010-0015-6

Rendón-Rivera, A., Toledo-Antonio, J. A., Cortés-Jácome, M. A., & Angeles-Chávez, C. (2011). Generation of highly reactive OH groups at the surface of TiO2 nanotubes. Catalysis Today, 166(1), 18–24. https://doi.org/10.1016/j.cattod.2010.03.045

Tapia Rodríguez, A., Ramírez Dávila, J. F., Salgado Siclán, M. L., Castañeda Vildózola, Á., Maldonado Zamora, F. I., & Lara Díaz, A. V. (2020). Distribución espacial de antracnosis (Colletotrichum gloeosporioides Penz) en aguacate en el Estado de México, México. Revista Argentina de Microbiología, 52(1), 72–81. https://doi.org/https://doi.org/10.1016/j.ram.2019.07.004

Published
2024-07-05
How to Cite
Sánchez-Sánchez, P., Aguilar-Sánchez, N. C., Angeles-Chavez, C., Hernández-Cruz, M. G., García-Zaleta, D. S., & Encarnación-Gómez, C. (2024). Structural, morphological and optical characterization of Ag, Cu and Ag-Cu/TiO2-NTs nanomaterials. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(23), 117-123. https://doi.org/10.29057/icbi.v12i23.11766
Section
Research papers