C-H activation reactions for preparation of 2,5 di(hetero)aryl furans

Keywords: C-H activation, furan, indole, fluorescecnce

Abstract

In this study, the synthesis of substituted 2,5-di(hetero)aryl furans was carried out by double C-H activation of furan with palladium acetate, using (hetero)aryl halides, obtaining acceptable yields. Furan substitution with aryl groups containing electron withdrawing groups gave low molecular weight fluorescent molecules with potential optoelectronic applications. However, the double substitution of furan with electron donating indole units gave compounds practically devoid of fluorescence.

Downloads

Download data is not yet available.

References

Arroniz, A., Chaubet, G., Anderson, E. A. (2018) Dual oxidation state tandem catalysis in the palladium-catalyzed isomerization of alkynyl epoxides to furans. ACS Catalysis. 8, 8290-8295

Cao, H., Rupar, P. A. (2017). Recent advances in conjugated furans. Chemistry European Journal, 23, 14670-14675. DOI: 10.1002/chem.201703355

Chacón-Huete, F., Mangel, D., Ali, M., Sudano, A., Forgione, P. (2017) High-value biomass-derived 2,5-furandicarboxylic acid derivatives obtained by a double decarboxylative cross-coupling. ACS Sustainable Chemistry and Engineering, 5, 7071-7076. DOI: 10.1021/acssuschemeng.7b01277

Chen, L., Roger, J., Bruneau, C., Dixneuf, P. H., Doucet, H. (2011). Phosphine‐Free Palladium Catalytic System for the Selective Direct Arylation of Furans or Thiophenes bearing Alkenes and Inhibition of Heck‐Type Reaction. Advanced Synthesis and Catalysis, 353, 2749-2760. DOI: 10.1002/adsc.201100193.

Donlic, A., Zafferani, M., Malakiva, P., Hargrove A. E. (2020) Regulation of MALAT1 triple helix stability and in vitro degradation by diphenylfurans. Nucleic Acids Research, 48, 7653–7664. DOI: 10.1093/nar/gkaa585

Forrest, S. R., (2020). Organic Electronics. Foundations to applications. Oxford University Press, New York. DOI: 10.1093/oso/9780198529729.001.0001

Häfner, M., Sokolenko, Y. M., Gamerdinger, P., Stempel, E., Gaich, T. (2019). Enantioselective Synthesis of Cyclohepta [b] indoles via Pd-Catalyzed Cyclopropane C (sp3)–H Activation as a Key Step. Organic Letters, 21, 7370-7374. DOI: 10.1021/acs.orglett.9b02687.

Hu, Y., Ke, Q., Yan. C., Xu, C-H., Huang, X-H., Hu, S-L. (2016). A new fluorescence chemosensor for selective detection of copper ion in aqueous solution. Tetrahedron Letters, 57,2239-2243. DOI: 10.1016/j.tetlet.2016.04.025

Hu, X., Zhou, B., Jin, H., Liu, Y., Zhang , L. (2020) Bifunctional phosphine ligand-enabled gold-catalyzed direct cycloisomerization of alkynyl ketones to 2,5-disubstituted furans. Chemical Communications. 56, 5297-52300. DOI: 10.1039/D0CC01238F

Jiang, H., Zeng, W., Li, Y., Wu, W., Huang, L., Fu, W. (2012) Copper(I)-Catalyzed Synthesis of 2,5-Disubstituted Furans and Thiophenes from Haloalkynes or 1,3-Diynes. Journal of Organic Chemistry. 77, 5179-5183. DOI:10.1021/jo300692d

Kazantsev, M. S., Frantseva, E. S., Kudriashova, L. G., Konstantinov, V. G., Mannnanov, A. A., Rybalova, T. V., Karpova, E. V., Shundrina, I. K., Kamaev, G. N., Pshenichnikov, M. D., Mostovich, E. A., Paraschu, D. Y. (2016) Highly-emissive solution-grown furan/phenylene co-oligomer single crystals. RSC Advances, 6, 92325-92329. DOI: 10.1039/C6RA23160H

Klukas, F., Grunwald, A., Menschel, F., Müller, T. J. J. (2014) Rapid pseudo five-component synthesis of intensively blue luminescent 2,5-di(hetero)arylfurans via a Sonogashira–Glaser cyclization sequence Beilstein Journal of Organic Chemistry, 10, 672-679. DOI: 10.3762/bjoc.10.60

Kumar, A., Stephens, C. E., Boykin, D. W. (1999) Palladium catalyzed cross-coupling reactions for the synthesis of 2,5-disubstituted furans. Heterocyclic Communications, 5, 301-304. DOI: 10.1515/HC.1999.5.4.301

Mulay, S. V., Bogoslavky, B., Galanti, I. Glunc, E. Gidron, O. (2018) Bifuran-imide: A stable furan building unit for organic electronics. Journal Materials Chemistry C. DOI: 11951-11955. 10.1039/C8TC02908C

Petit, A., Flygare, J., Miller, A. T., Winkel, G. Ess, D. H. (2012) Transition-State Metal Aryl Bond Stability Determines Regioselectivity in Palladium Acetate Mediated C–H Bond Activation of Heteroarenes. Organic Letters, 14, 3680-3683. DOI: 10.1021/ol301521n

Rao., H. S. P., Jothilingam, S. (2003). Facile microwave-mediated transformations of 2-butene-1,4-diones and 2-butyne-1,4-diones to furan derivatives. Journal of Organic Chemistry. 68, 5392-5394. DOI: 10.1021/jo0341766

Sheberla, D., Patra, S., Wijsboom, Y. H., Sharma, S., Sheynin, Y., Haj-Yahia, A-E., Barak, A. H., Gidron, O., Bendikov, M. (2015). Conducting polyfurans by electropolymerization of oligofurans. Chemical Science, 6, 360-371. DOI: 10.1039/c4sc02664k

Zhao, Z., Nie. H., Ge, C., Cai. Y., Xiong, Y., Qi, J., Wu, W., Kwok, R. T. K., Gao, X., Qin, A., Lam, J. W. Y., Tang, B. Z. (2017) Furan is superior to thiophene: A furan-cored AIEgen with remarkable chromism and OLED performance. Advanced Science, 4, 1700005. DOI: 10.1002/advs.201700005

Zheng, Q., Hua, R., Jiang, J., Zhang, L. (2014). A general approach to arylated furans, pyrroles, and thiophenes. Tetrahedron, 70, 8252-8256. DOI: 10.1016/j.tet.2014.09.025

Published
2024-07-05
How to Cite
Castro-Castro, D., Mendoza-Espinosa, D., & Alvarez, A. (2024). C-H activation reactions for preparation of 2,5 di(hetero)aryl furans . Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(23), 111-116. https://doi.org/10.29057/icbi.v12i23.12025