Calculation of soil resistance by interpolating it whit the FEM

Keywords: Interpolation, Finite element, Foundations, Ground resistance, Footings, Contour functions, Border nodes

Abstract

The interpolation of soil resistance by means of the finite element method is currently useful for the design of foundations. This is because you can determine the depth of the level of displacement and simultaneously know the requirements of treatment or improvement of the terrain. The finite element method was used to interpolate, from data obtained in the field, the mechanical properties of a land on which the foundation will be designed by means of shoes. Through the traditional method, samples were extracted at six points on a site every 50 cm deep during the excavation of open pit (4 m); Laboratory tests were performed to obtain resistance (T / m2). Then the contour functions were determined, with which the property was discretized to obtain the sample spaces. With the field surveys, the border nodes were determined, with which the conditions of the known variables were established during the exploration. Next, interpolation functions were used, where the ground resistance was associated with the proposed location of foundation shoes at the points not sampled in the field. The results through interpolation allowed determining the resistance of the terrain at the proposed location for the shoes that will move on the site. For its validation, the results of the traditional method in two open pit were compared with the results of the interpolation in two shoes of the construction method. The simulation results represented a congruence of 98% in the application of both methods analyzed.

Downloads

Download data is not yet available.

References

Argumedo, A. K. (2016). Análisis de estabilidad de taludes mediante elementos finitos estocásticos en yacimiento Fénix Slope stability analysis at Fenix open pit mine using stochastic finite elements.

Canals, L. F. (2005). Metodos Numericos: Introduccion al Metodo de Elementos Finitos.

Celigüeta, J. T. (2008). Método de los Elementos Finitos para Análisis Estructural. https://doi.org/84-921970-2-1

Charlton, T. J. (2017). iGIMP : An implicit generalised interpolation material point method for large deformations. Computers and Structures, 190, 108–125. https://doi.org/10.1016/j.compstruc.2017.05.004

Cueto, O. G. (2012). Modelo en elementos finitos de la interacción neumático-suelo Resumen Introducción, (November 2017).

Daniel H Cortés. (2004). Modelo de elementos finitos para el análisis lineal de un material poroelastico transversalmente isotropo, 45–56.

Escolano-Sánchez, F. (2015). Análisis comparativo entre el método por elementos ?nitos (FEM) y el método clásico (MC) en la estimación de asientos y cálculo del coe?ciente de balasto para el diseño de losas de cimentación en zonas afectadas por cavidades naturales o antrópicas, 67(537), 2–7.

Escudero, M. A. G. (2010). Análisis y diseño estructural de la cimentación y torre de soporte del gran telescopio milimétrico, (136).

González-cueto, O. (2013). Análisis de los modelos constitutivos empleados para simular la compactación del suelo mediante el método de elementos finitos, 22(3), 75–80.

Mayoral-villa, J. (2003). Calibración de modelos de elemento finito para el análisis de interacción suelo-pila.

Oliva, E. (2005). Aplicación del Método de los Elementos Finitos en la Simulación de Cimentaciones Superficiales .

Palacio. (2000). Interacción suelo-estructura considerando flexibilidad del suelo.pdf.

Palomino-tamayo, J. L. (2017). Aplicación de campos estocásticos en problemas de geotecnia Application of stochastic fields in geotechnical problems, 16(2), 185–195.

Peck. (2001). Ingenieria-de-Cimentaciones-Libro Ralph-Peck.pdf.

Pineda-Contreras A.R. (2013). Método del elemento finito estocástico en geotecnia . Enfoque espectral Stochastic

Finite Element Method in Geotechnical Engineering . Spectral Approach.

Poenaru, A. (2016). Correlations between cone penetration test and seismic dilatometer Marchetti test with common laboratory investigations, 85(November 2015), 399–407. https://doi.org/10.1016/j.egypro.2015.12.219

Romano, M. (2016). Factor Escala UTM, 2.

Shanpo, J. (2012). Numerical Solution to Identification Problems of Material Parameters in Geotechnical

Engineering, 28(2011), 61–65. https://doi.org/10.1016/j.proeng.2012.01.683

Vu-hoang, T. (2018). Bubble-enhanced quadrilateral finite element formulation for nonlinear analysis of geotechnical problems. Underground Space, 3(3), 229–242. https://doi.org/10.1016/j.undsp.2018.01.007

Wobbes, E. (2017). Modeling of liquefaction using two-phase FEM with UBC3D-PLM model. Procedia Engineering, 175, 349–356. https://doi.org/10.1016/j.proeng.2017.01.043

Zheng, Y. (2009). Strength reduction and step-loading finite element approaches in geotechnical engineering. Journal of Rock Mechanics and Geotechnical Engineering, 1(1), 21–30. https://doi.org/10.3724/SP.J.1235.2009.00021

Zugic, Z. (2018). Geotechnical aspects on seismic retrofit. Procedia Structural Integrity, 13, 410–414. https://doi.org/10.1016/j.prostr.2018.12.068

Published
2020-07-05
How to Cite
Ceron-Carballo, J. E., Pérez-Isidro, E., Lizárraga-Mendiola , L. G., Navarro-Gómez, H. I., Rodríguez-Álvarez , C., & Ramos-Torres , G. (2020). Calculation of soil resistance by interpolating it whit the FEM. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 8(15), 7-13. https://doi.org/10.29057/icbi.v8i15.4974

Most read articles by the same author(s)

<< < 1 2