Importance of the study of catalysts for organosulfur-compounds reduction in gasoline and diesel

Keywords: Sulfur oxides, Hydrodesulfurization, Catalysts

Abstract

Sulfur oxides (SOx) emissions are produced by transport combustions. This emissions cause environmental pollution. The accumulation of sulfur oxide particles in the atmosphere produces acid rain, which damages living beings and buildings. An alternative to decrease the sulfur content in fuels is the hydrodesulfurization process. This process is a kind of hydrotreating that uses catalysts to decrease the organo-sulfur compounds in gasoline and diesel. Therefore, environmental regulations has been implemented to regulate the sulfur content in fuels. However, commercial gasoline and diesel do not satisfy those regulations. For this reason, the research on the study of catalysts continues. This work shows a review about studies carry out with NiW, NiMo and CoMo catalysts used in hydrodesulfurization reactions and how that modifications influence in the catalytic activity.

Downloads

Download data is not yet available.

References

Castillo R. F., Roldán R.M.D, Blaco P.R, Huertas R.M.J, Caballero D.F.J., Moreno V.C., Luque R. M., 2005, Biotecnología Ambiental, Tébar, Madrid.

Chary K. V. R., Ramakrishna H., Rama Rao K. S., Murali Dhar G., Kanta Rao P., 1991, Hydrodesulfurization on MoS2/MgO, Catalysis Letters, 10, 27-33. DOI:10.1007/bf00764733

Guisnet M., Gilson J. P., 2002, Zeolites for Cleaner Technologies, Imperial College Press, Londres

Hensen, E. J. M., van der Meer, Y., van Veen, J. A. R., Niemantsverdriet, J. W., 2007, Insight into the formation of the active phases in supported NiW hydrotreating catalysts, Applied Catalysis A: General, 322, 16-32. DOI:10.1016/j.apcata.2007.01.003

Hinnemann B., Nørskov J.K., Topsøe H., 2005, A Density Functional Study of the Chemical Differences between Type I and Type II MoS2-Based Structures in Hydrotreating Catalysts, Journal of Physical Chemistry B, 109, 2245-2253. DOI:10.1021/jp048842y

Ho T.C., 2004, Deep HDS of diesel fuel: chemistry and catalysis, Catalysis Today, 98, 3-8. DOI:10.1016/j.cattod.2004.07.048

Mogica-Betancourt J.C., López-Benítez A., Montiel-López J.R., Massin L., Aouine M., Vrinat M., Berhault G., Guevara-Lara A., 2014, Interaction effects of nickel polyoxotungstate with the Al2O3-MgO support for application in dibenzothiophene hydrodesulfurization, Journal of Catalysis, 313, 9-23. DOI:10.1016/j.jcat.2014.02.009.

Nag N. K., Sapre A.V., Broderick D.H., Gates B. C., 1979, Hydrodesulfurization of polycyclic aromatics catalyzed by sulfided CoO-MoO3/g-Al2O3: The relative reactivities, Journal of Catalysis, 57, 509-512. DOI:10.1016/0021-9517(79)90016-2

Puigcerver M., Carrascal M.D., 2008, El medio atmosférico: meteorología y contaminación, UBE, Barcelona.

Rangarajan S., Mavrikakis M., 2017, On the Preferred Active Sites of Promoted MoS2 for Hydrodesulfurization with Minimal Organonitrogen Inhibition, American Chemical Society Catalysis, 7(1), 501-509. DOI:10.1021/acscatal.6b02735

Scheffer B., Mangnus P. J., Moulijn J. A, 1990, A Temperature-Programmed Sulfiding Study of NiO-WO3/Al2O3 Catalysts, Journal of Catalysis, 121(1), 18-30. DOI:10.1016/0021-9517(90)90213-4

Shriver D.F., Atkins P.W., Langford C. H., 2004, Química Inorgánica, Reverté S.A, Barcelona

Stanislaus A., Cooper B. H., 1994, Aromatic Hydrogenation Catalysis: A Review, Catalysis Reviews-Science and Engineering 36(1), 75-123. DOI:10.1080/01614949408013921

Topsøe H., Clausen B.S., Massoth F.E., 1996, Hydrotreating Catalysis, Springer-Verlag Berlín Heidelberg, Alemania

Topsøe H., 2007, The role of Co-Mo-S type structures in hydrotreating catalysts, Applied Catalysis, 322, 3-8. DOI:10.1016/j.apcata.2007.01.002

Vatutina, Y. V., Klimov O. V., Stolyarova Е. А., Nadeina К. А., Danilova I. G., Chesalov Y. A., Gerasimov Е.Y., Prosvirin I.P., Noskov, А. S., 2019, Influence of the phosphorus addition ways on properties of CoMo-catalysts of hydrotreating, Catalysis Today, 329, 13-23. DOI: 10.1016/j.cattod.2019.01.005

Vissenberg M. J., van der Meer Y., Hensen E. J. M., de Beer V. H. J., van der Kraan A. M., van Santen R. A., van Veen J. A. R., 2001, The Effect of Support Interaction on the Sulfidability of Al2O3- and TiO2-Supported CoW and NiW Hydrodesulfurization Catalysts, 2001, Journal of Catalysis, 198, 151-163. DOI:10.1006/jcat.2000.3132

Wilson M.F., Fischer I.P., Kriz J.F., 1985, Hydrogenation of aromatic compounds in synthetic crude distillates catalyzed by sulfide Ni-W/g-Al2O3, Journal of Catalysis 95, 155-156. DOI: 10.1016/0021-9517(85)90016-8

Wivel C., Candia R., B.S. Clausen, S. Mørup H. Topsøe, 1981, On the Catalytic Significance of a Co-Mo-S Phase in Co-Mo/Al2O3 Hydrodesulfurization Catalysts: Combined in Situ Mössbauer Emission Spectroscopy and Activity Studies, Journal of Catalysis, 68, 433-453 DOI:10.1016/0021-9517(81)90115-9

Zhang L., Dong P., Fu W., Dai Q., Tang T., 2018, MOR nanosheet assemblies supported NiW catalysts in the hydrodesulfurization of the 4,6-DMDBT: Effect of Ni/W ratio on the catalytic performance, Catalysis Today, 316, 99-106. DOI:10.1016/j.cattod.2018.01.032

Zuo D., Li D., Nie H., Shi Y., Lacroix M., Vrinat M., 2004, Acid–base properties of NiW/Al2O3 sulfided catalysts: relationship with hydrogenation, isomerization and hydrodesulfurization reactions, Journal of Molecular Catalysis A: Chemical, 211, 179-189. DOI: 10.1016/j.molcata.2003.10.018

Zuo D., Vrinat M., Nie H., Maugé F., Shi Y., Lacroix M., Li D., 2004, The formation of the active phases in sulfided NiW/Al2O3 catalysts and their evolution during post-reduction treatment, Catalysis Today, 93-95, 751-760. DOI:10.1016/j.cattod.2004.06.078.

Published
2021-01-05
How to Cite
Salinas, L. (2021). Importance of the study of catalysts for organosulfur-compounds reduction in gasoline and diesel. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 8(16), 48-53. https://doi.org/10.29057/icbi.v8i16.5773