Manufacture of binderless fiberboards from agro-industrial waste

Keywords: Fibers, Lignin, Biocomposite, Binderless board, Agroindustrial waste

Abstract

Most of the construction agglomerates use plastic resins based on toxic compounds that are applied to closed spaces and decrease the quality of indoor air, in addition to being considered carcinogenic. However, the growing demand for these materials for construction after rapid urbanization, as well as the limited forest resource from which they are obtained, make it essential to seek other types of more environmentally friendly alternatives. Under this premise, the objective was to develop a self-adhered agglomerated composite for use as interior dividing wall boards by taking advantage of agro-industrial waste from the palm oil and coconut fiber industry. The conformation of the agglomerate was carried out through a thermo-compression process that allowed the softening of the lignin, which served as a binder for the fibers and gave them rigidity without the need to use synthetic adhesives.

Downloads

Download data is not yet available.

References

Almeida, M. E. M. (2012). Elaboración de tableros aglomerados auto-adheridos a partir de fibra de raquis de palma africana (Elaeis guineensis Jacq.). 200.

Álvarez, D. V. M. (2016). Determinación de factores de emisión de bióxido de carbono (CO2), partículas en suspensión de 2.5 y 10 micras (PM2.5 y PM10) y contaminantes de vida corta, metano (CH4) y carbono negro por prácticas de quema agrícola. 78.

Ang, A. F., Ashaari, Z., Lee, S. H., Md Tahir, P., & Halis, R. (2019). Lignin-based copolymer adhesives for composite wood panels – A review. International Journal of Adhesion and Adhesives, 95, 102408. https://doi.org/10.1016/j.ijadhadh.2019.102408

Anglès, M. N., Ferrando, F., Farriol, X., & Salvadó, J. (2001). Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition. Biomass and Bioenergy, 21(3), 211-224. https://doi.org/10.1016/S0961-9534(01)00031-9

Anglès, M. N., Reguant, J., Montané, D., Ferrando, F., Farriol, X., & Salvadó, J. (1999). Binderless composites from pretreated residual softwood. Journal of Applied Polymer Science, 73(12), 2485-2491. https://doi.org/10.1002/(SICI)1097-4628(19990919)73:12<2485::AID-APP17>3.0.CO;2-G

Araújo Junior, C. P., Coaquira, C. A. C., Mattos, A. L. A., de Souza Filho, M. de S. M., Feitosa, J. P. de A., Morais, J. P. S. de, & de Freitas Rosa, M. (2018). Binderless Fiberboards Made from Unripe Coconut Husks. Waste and Biomass Valorization, 9(11), 2245-2254. https://doi.org/10.1007/s12649-017-9979-9

Atchison, J. E. (1976). Agricultural Residues and Other Nonwood Plant Fibers. Science, 191(4228), 768-772.

Baskaran, M., Hashim, R., Sulaiman, O., Hiziroglu, S., Sato, M., & Sugimoto, T. (2015). Optimization of press temperature and time for binderless particleboard manufactured from oil palm trunk biomass at different thickness levels. Materials Today Communications, 3, 87-95. https://doi.org/10.1016/j.mtcomm.2015.04.005

Boon, J. G., Hashim, R., Danish, M., & Nadhari, W. N. A. W. (2019). Physical and Mechanical Properties of Binderless Particleboard Made from Steam-Pretreated Oil Palm Trunk Particles. Journal of Composites Science, 3(2), 46. https://doi.org/10.3390/jcs3020046

Börcsök, Z., & Pásztory, Z. (2021). The role of lignin in wood working processes using elevated temperatures: An abbreviated literature survey. European Journal of Wood and Wood Products, 79(3), 511-526. https://doi.org/10.1007/s00107-020-01637-3

Coloma, I. T. (2018). Obtención de celulosa micro cristalina a partir de la fibra de estopa de coco. 91.

Diario Oficial de la Federación. (2021). NORMA Oficial Mexicana NOM-025-SSA1-2021, Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto a las partículas suspendidas PM10 y PM2.5. Valores normados para la concentración de partículas suspendidas PM10 y PM2.5 en el aire ambiente, como medida de protección a la salud de la población. https://dof.gob.mx/nota_detalle.php?codigo=5633855&fecha=27/10/2021

Enshassi, A., Kochendoerfer, B., & Rizq, E. (2014). Evaluación de los impactos medioambientales de los proyectos de construcción. Revista ingeniería de construcción, 29(3), 234-254. https://doi.org/10.4067/S0718-50732014000300002

Fahmy, T., & Mobarak, F. (2013). Advanced binderless board-like green nanocomposites from undebarked cotton stalks and mechanism of self-bonding. Cellulose, 20, 1453-1457. https://doi.org/10.1007/s10570-013-9911-9

FAO. (1957). Productos forestales. https://www.fao.org/3/x5385s/x5385s06.htm

García, S. L. Q., & Salcedo, L. O. G. (2006). Uso de fibra de estopa de coco para mejorar las propiedades mecánicas del concreto. 18.

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

Ghaffar, S. H., & Fan, M. (2014). Lignin in straw and its applications as an adhesive. International Journal of Adhesion and Adhesives, 48, 92-101. https://doi.org/10.1016/j.ijadhadh.2013.09.001

Hashim, R., Said, N., Lamaming, J., Baskaran, M., Sulaiman, O., Sato, M., Hiziroglu, S., & Sugimoto, T. (2011). Influence of press temperature on the properties of binderless particleboard made from oil palm trunk. Materials & Design, 32(5), 2520-2525. https://doi.org/10.1016/j.matdes.2011.01.053

Hassan, A., Salema, A. A., Ani, F. N., & Bakar, A. A. (2010). A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials. Polymer Composites, 31(12), 2079-2101. https://doi.org/10.1002/pc.21006

Herrera, J. F. D. L. C., Rojo, Ú. M., Parra, S. B., & López, C. Á. (2011). Efecto de la temperatura de procesado sobre las propiedades mecánicas de tableros aglomerados sin resina sintética. Prospectiva, 9(2 (julio-diciembre)), 75-80.

Hidayat, H., Keijsers, E. R. P., Prijanto, U., van Dam, J. E. G., & Heeres, H. J. (2014). Preparation and properties of binderless boards from Jatropha curcas L. seed cake. Industrial Crops and Products, 52, 245-254. https://doi.org/10.1016/j.indcrop.2013.10.024

Iling, E., Hazimmah Ali, D. S., & Osman, M. S. (2019). Effect of Pressing Pressure on Physical and Mechanical Properties of Elaeis Guineensis Fronds Composite Board. e-BANGI Journal, 16(3), 1-12.

Ilyas, R. A., Sapuan, S. M., Kadier, A., Krishnan, S., Atikah, M. S. N., Ibrahim, R., Nazrin, A., Syafiq, R., Misri, S., Huzaifah, M. R. M., & Hazrol, M. D. (2020). Chapter 7—Mechanical Testing of Sugar Palm Fiber Reinforced Sugar Palm Biopolymer Composites. En F. M. Al-Oqla & S. M. Sapuan (Eds.), Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (pp. 89-110). Elsevier. https://doi.org/10.1016/B978-0-12-819661-8.00007-X

Jawaid, M., Sapuan, S. M., & Alothman, O. Y. (Eds.). (2017). Green Biocomposites: Design and Applications. Springer International Publishing. https://doi.org/10.1007/978-3-319-49382-4

Mancera, C., El Mansouri, N.-E., Pelach, M. A., Francesc, F., & Salvadó, J. (2012). Feasibility of incorporating treated lignins in fiberboards made from agricultural waste. Waste Management, 32(10), 1962-1967. https://doi.org/10.1016/j.wasman.2012.05.019

Mancera, C., Ferrando, F., Salvadó, J., & El Mansouri, N. E. (2011). Kraft lignin behavior during reaction in an alkaline medium. Biomass and Bioenergy, 35(5), 2072-2079. https://doi.org/10.1016/j.biombioe.2011.02.001

Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43(7), 1732-1739. https://doi.org/10.1016/j.enbuild.2011.03.015

Porras, Á. C., & González, A. R. (2016). Aprovechamiento de residuos orgánicos agrícolas y forestales en Iberoamérica. Academia y Virtualidad, 9(2), 90-107. https://doi.org/10.18359/ravi.2004

Quintana, G., Velásquez, J., Betancourt, S., & Gañán, P. (2009). Binderless fiberboard from steam exploded banana bunch. Industrial Crops and Products, 29(1), 60-66. https://doi.org/10.1016/j.indcrop.2008.04.007

Quintero, M., & Moncada, A. (2008). Contaminación y control de las quemas agrícolas en Imperial, California, y Mexicali, Baja California. Región y sociedad, 20(43), 3-24.

Saval, S. (2012). Aprovechamiento de Residuos Agroindustriales: Pasado, Presente y Futuro. 16(2), 34.

SEMARNAT. (2018). Informe del Medio Ambiente. https://apps1.semarnat.gob.mx:8443/dgeia/informe18/index.html

Singh, A. A., Afrin, S., & Karim, Z. (2017). Green Composites: Versatile Material for Future. En M. Jawaid, M. S. Salit, & O. Y. Alothman (Eds.), Green Biocomposites: Design and Applications (pp. 29-44). Springer International Publishing. https://doi.org/10.1007/978-3-319-49382-4_2

Sreekala, M. S., Kumaran, M. G., & Thomas, S. (1997). Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science, 66(5), 821-835. https://doi.org/10.1002/(SICI)1097-4628(19971031)66:5<821::AID-APP2>3.0.CO;2-X

Theng, D., Arbat, G., Delgado-Aguilar, M., Ngo, B., Labonne, L., Mutjé, P., & Evon, P. (2019). Production of fiberboard from rice straw thermomechanical extrudates by thermopressing: Influence of fiber morphology, water and lignin content. European Journal of Wood and Wood Products, 77. https://doi.org/10.1007/s00107-018-1358-0

Theng, D., Mansouri, N.-E. E., Arbat, G., Ngo, B., Delgado-Aguilar, M., Pèlach, M. À., Fullana-i-Palmer, P., & Mutjé, P. (2017). Fiberboards Made from Corn Stalk Thermomechanical Pulp and Kraft Lignin as a Green Adhesive. BioResources, 12(2), 2379-2393.

Torres, J. (2020). Estudio de tendencias y perspectivas del sector forestal en América Latina al año 2020. https://www.fao.org/3/j2215s/j2215s06.htm

Tupciauskas, R., Gravitis, J., Abolins, J., Veveris, A., Andzs, M., Liitia, T., & Tamminen, T. (2017). Utilization of lignin powder for manufacturing self-binding HDF. Holzforschung, 71(7-8), 555-561. https://doi.org/10.1515/hf-2016-0180

Vitrone, F., Ramos, D., Ferrando, F., & Salvadó, J. (2021). Binderless fiberboards for sustainable construction. Materials, production methods and applications. Journal of Building Engineering, 44, 102625. https://doi.org/10.1016/j.jobe.2021.102625

Wang, J., Wang, B., Liu, J., Ni, L., & Li, J. (2019). Effect of Hot-Pressing Temperature on Characteristics of Straw-Based Binderless Fiberboards with Pulping Effluent. Materials, 12(6), 922. https://doi.org/10.3390/ma12060922

Xie, L., Liu, J., & Du, A. (2012). Effect of hot-pressing factors on binderless fiberboard properties. Proceedings of 2012 International Conference on Biobase Material Science and Engineering, 8-11. https://doi.org/10.1109/BMSE.2012.6466168

Yano, B. B. R., Silva, S. A. M., Almeida, D. H., Aquino, V. B. M., Christoforo, A. L., Rodrigues, E. F. C., Junior, A. N. C., Silva, A. P., & Lahr, F. A. R. (2020). Use of Sugarcane Bagasse and Industrial Timber Residue in Particleboard Production. BioResources, 15(3), 4753-4762. https://doi.org/10.15376/biores.15.3.4753-4762

Zuber, S. H., Hashikin, N. Ab. A., Mohd Yusof, M. F., & Hashim, R. (2020). Lignin and soy flour as adhesive materials in the fabrication of Rhizophora spp. Particleboard for medical physics applications. The Journal of Adhesion, 0(0), 1-20. https://doi.org/10.1080/00218464.2020.1839430

Published
2022-06-24
How to Cite
Villalobos Garcia, S., & Ocampo Ruiz, E. (2022). Manufacture of binderless fiberboards from agro-industrial waste. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial2), 136-141. https://doi.org/10.29057/icbi.v10iEspecial2.8688