A device for creep tests in elastomers at different temperatures

Keywords: Mechanical design, viscoelasticity, creep, digital image correlation, temperature control

Abstract

In this work, the mechanical design process is applied to achieve a device for experimental creep tests on different elastomers under different loads and temperatures. It consists of two subsystems. The first is a temperature chamber with PI control, which integrates a dead load application mechanism to assure the application of a constant load during the tests. The second consists of the strain measurement system using the digital image correlation technique. To prove its effectiveness, creep tests were carried out on a common elastomer with a duration of 25 minutes. The results obtained are validated by repeatability tests. Finally, the proposed device can be used for creep tests on a wide variety of elastomers to assess their long-term viscoelastic behavior at different loads and temperatures.

Downloads

Download data is not yet available.

References

Al-Hiddabi S. A., Pervez T., Qamar S. Z., Al-Jahwari F. K., Marketz F., Al-Houqani S, van de Velden M., (2015). Analytical model of elastomer seal performance in oil wells. Applied Mathematical Modelling 39(10–11), 2836-2848. https://doi.org/10.1016/j.apm.2014.10.028

Amador-González E., Sotomayor-del-Moral J. A., Pascual-Francisco J. B., Farfán-Cabrera L. I., (2021). Medición y obtención de modelo de fluencia lenta en elastómeros. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI 9(17), 108-113. https://doi.org/10.29057/icbi.v9i17.7136

Brostow W., (2009). Reliability and prediction of long-term performance of polymer-based materials. Pure Applied Chemistry 81(3), 417-432. https://doi.org/10.1351/PAC-CON-08-08-03

Cross N., (2008). Engineering Design Methods: Strategies for Product Design. fourth ed., The McGraw-Hill Companies, England.

Cui H. R., Tang G. J., Shen Z. B., (2016). Study on the viscoelastic poisson`s ratio of solid propellants using digital image correlation method. Propellants, Explosives, Pyrotechnics, 41 (5), 835-843. https://doi.org/10.1002/prep.201500313

D. Tscharnuter, M. Jerabek, Z. Major, Time-dependent poisson’s ratio of polypropylene compounds for various strain histories. Materials Mechanics of Time-Dependent Materials Mechanics, 15 (2010) 15-28. https://doi.org/10.1007/s11043-010-9121-x

Delmastro J. I., (2006). Diseño de máquina para ensayos de Creep, Creep-Fatiga y falla por carga sostenida, tesis de doctorado, Universidad Nacional de Cuyo, Ciudad de Mendoza, Argentina.

Ernst L.J., Zhang G.Q., Jansen K.M.B., Bressers H.J.L., (2003). Time- and Temperature-Dependent Thermo- Mechanical Modeling of a Packaging Molding Compound and its Effect on Packaging Process Stresses. Journal of Electronic Packaging, Transactions of the ASME 125(4), 539–548. https://doi.org/10.1115/1.1604156

Farfán-Cabrera L. I., Pascual-Francisco J. B., (2022). An Experimental Methodological Approach for Obtaining Viscoelastic Poisson’s Ratio of Elastomers from Creep Strain DIC-Based Measurements, Experimental Mechanics 62, 287–297. https://doi.org/10.1007/s11340-021-00792-9

Farfán-Cabrera L. I., Pascual-Francisco J. B, Gallardo- Hernández E. A., Susarrey-Huerta O., (2018). Application of digital image correlation technique to evaluate creep degradation of sealing elastomers due to exposure to fluids. Polymer Testing 65, 134-141. https://doi.org/10.1016/j.polymertesting.2017.11.017

Findley W. N., Lai J. S., Onaran K., (1989). Creep and relaxation of nonlinear viscoelastic materials, first edition, Dover publications, New York, pp. 1-7.

Flitney R. K., (2007). Seals and Sealing Handbook. fifth ed., Butterworth-Heinemann,

Luo R., (2019). Creep prediction with temperature effect and experimental verification of rubber suspension components used in rail vehicles. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233(11), 3950-3963. https://doi.org/10.1177/0954406218809143

Luo R., (2015). Creep simulation and experiment for rubber springs. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 230(2), 681-688. https://doi.org/10.1177/1464420715576558

Norton R. L., (2011). Diseño de Máquinas: Un Enfoque Integrado. fourth ed., Pearson Educación, México.

Pandini S., Pegoretti A., (2008). Time, temperature, and strain effects on viscoelastic Poisson's ratio of epoxy resins, Polymer Engineering and Science 48, 1434-1441. https://doi.org/10.1002/pen.21060

Pascual-Francisco J. B., Farfán-Cabrera L. I., Susarrey-Huerta O., (2020). Characterization of tension set behavior of a silicone rubber at different loads and temperatures via digital image correlation. Polymer Testing 81, 106226. https://doi.org/10.1016/j.polymertesting.2019.106226

Sahu R., Patra K., Szpunar J., (2015). Experimental study and numerical modelling of creep and stress relaxation of dielectric elastomers. Strain 51, 43-54. https://doi.org/10.1111/str.12117

Shaw M. T., Macnight W. J., (2005). Introduction to Polymer viscoelasticity, third edition, Wiley, New Jersey, pp. 19-23.

Spathis G., Kontou E., (2012). Creep failure time prediction of polymers and polymer composites. Composites Science Technology, 72(9), 959­964. https://doi.org/10.1016/j.compscitech.2012.03.018

Ullman D., (2010). The Mechanical Design Process. fourth ed., The McGraw-Hill Companies, New York.

Published
2022-11-30
How to Cite
Sotomayor-del-Moral, J. A., Pascual-Francisco, J. B., & Farfán-Cabrera, L. I. (2022). A device for creep tests in elastomers at different temperatures. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial6), 1-9. https://doi.org/10.29057/icbi.v10iEspecial6.8809