First principles study of the structural, electronic and optical properties of the CsSnBr3 system using the Siesta code

Keywords: materials, CsSnBr3, code, pseudopotential, properties, Ab initio, perovskites

Abstract

      In the present theoretical study, the SIESTA code was used; based on the density functional theory (DFT), which allows determining the different properties of materials, such as structural, electronic, and optical properties. This study is aimed at a cesium tin bromide perovskite (CsSnBr3), with a face-centered cubic structure, where the parameters for the PBE-type pseudopotential GGA (Generalized Gradient Approximation) were optimized. In the first phase of the study, the test wave function was varied, the optimal value being 100 Ry, and the number of points of high symmetry in a Monkhorst-Pack mesh, by means of self-consistent calculations. Subsequently, the structure was optimized considering different lattice parameters; by relaxation calculations, obtaining the minimum energy structure at 5.787 Å. For the third part of the study, the calculation of the structure of bands and density of electronic states (DOS) was carried out, where the electronic behavior of the system as a conductor was established. Finally, the imaginary part of the dielectric function was obtained, which shows the absorption of the system and the internal phenomena that occur at the molecular level, in a range close to the ultraviolet spectrum.

Downloads

Download data is not yet available.

References

Alyoubi, R. Y., Raffah, B. M., Hamioud, F., & Mubarak, A. A. (2021). Efecto de la presión sobre los caracteres mecánicos, electrónicos y ópticos de CsSnBr3 y CsSnI3: estudio ab-initio. Física moderna Letra B, 35(3), 1–17.

Atienzar, P., & Bisquert, J. (n.d.). (2013). La Perovskita , futuro cierto de las energías renovables Del silicio a la perovskita Propiedades y aplicaciones, 1–4.

Bala, A., & Kumar, V. (2019). Stability of the Eu2+ Dopant in CsPbBr3 Perovskites: A First-Principles Study [Research-article]. Journal of Physical Chemistry.

Bala, A., Deb, A. K., & Kumar, V. (2018). Atomic and Electronic Structure of Two-Dimensional Inorganic Halide Perovskites An +1M n X3 n +1 (n = 1-6, A = Cs, M = Pb and Sn, and X = Cl, Br, and I) from ab Initio Calculations. Journal of Physical.

Benyahia, K.., Bouchikh, S.. Y Souyah, MEA. (2021). Cálculos ab-initio de estructura y propiedades electrónicas de la perovskita de haluro ternario CsSnBr3 en sus tres fases: estudio comparativo. Nuevas ideas sobre ciencia y tecnología vol. 10 , 128-134

Daniel, J., & Pérez, A. (2014). Métodos de simulación molecular : Una revisión de las herramientas más actuales. 24(2), 117–127.

Geller, S. (1956). Crystal structure of gadolinium orthoferrite, GdFeO3. The Journal of Chemical Physics, 24(6), 2–4.

Hasnip, P. J., Refson, K., Probert, M. I. J., Yates, J. R., Clark, S. J., & Pickard, C. J. (2014). Density functional theory in the solid state. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

Krishna K.Ghose, A. B. (2019). Electronic Structure and hight-temperature thermochemistry of BaZrO3 perovskite from first principlen calculations. Royal Society of Chemistry, 5-10.

L. K. Lamontagne. (2018). “Band Structures and the Meaning of the Wave Vector k”, Lect. Notes, vol. 1, núm. 6, pp. 1–9.

Ma, C. G., Krasnenko, V., & Brik, M. G. (2018). Cálculos de primeros principios de diferentes terminaciones de superficie (001) de tres perovskitas cúbicas CsCaBr3, CsGeBr3 y CsSnBr3. Revista de física y química de sólidos, 115(001), 289–299.

McGrath, F., Ghorpade, U. V., & Ryan, K. M. (2020). Síntesis y control dimensional de nanocristales de perovskita CsPbBr3 utilizando ligandos basados en fósforo.

Persson, Kristin (2014), Estados Unidos, datos de materiales sobre CsSnBr3 (SG:221) por materiales de proyecto, Datos de materiales computados utilizando cálculos de teoría funcional de densidad.

Rajeswarapalanichamy, R., Amudhavalli, A., Padmavathy, R., & Iyakutti, K. (2020). Band gap engineering in halide cubic perovskites CsPbBr3−yIy (y = 0, 1, 2, 3) – A DFT study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 258(June 2018), 114560.

Serway and Jewett. (2008). Física para ciencias e ingeniería con física moderna. México: Cengage Learning, Inc.

Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745–2779.

V. I. Minkin. (1999) “Glossary of terms used in theoretical organic chemistry (IUPAC Recommendations 1999)”, Pure Appl. Chem., vol. 71, núm. 10, pp. 1919–1981.

Zheng, J. C., Huan, C. H. A., Wee, A. T. S., & Kuok, M. H. (1999). Propiedades electrónicas de CsSnBr3: Estudios por experimento y teoría. Análisis de superficie e interfaz.

Published
2022-07-05
How to Cite
Sánchez-López, G., Arteaga-Varela, M., Camacho-González, M. A., Reyes-Valderrama, M. I., Sánchez-Castillo, A., & Rodríguez-Lugo, V. (2022). First principles study of the structural, electronic and optical properties of the CsSnBr3 system using the Siesta code. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(19), 108-112. https://doi.org/10.29057/icbi.v10i19.9146