Coverage of Fresnel clarity in LoRa IoT

Keywords: Fresnel, LoRa, IoT

Abstract

With the development of variable monitoring systems in remote places with a wide coverage perspective, telemetry in real-time without access to energy and that operate for long periods, current LoRa IoT technologies are able to provide connectivity in remote environments such as rivers, lakes, forests. As a result, sensors can carry out telemetry of variables typical to agriculture, livestock, and fish farming, among others things. The sensors connected to wireless networks that transmit data over great distances. Long-range communication systems must present a Fresnel clearance analysis showing the technical conditions of operation in order to achieve good coverage and connectivity. The analysis of the clarity and coverage detection of the first Fresnel zone of IoT devices with LoRa connectivity presented. The analysis and design of the wireless communication of IoT devices, presents a profile of antenna heights, earth curvature, and the estimation of the clearance of obstacles between the antennas, guaranteeing that the signal loss does not exceed the clarity of 60% of the first zone of Fresnel. The metrics obtained are the first radius of the Fresnel Zone: 9.037 meters radius at 0.5 Km; 60% radius without obstacles: 5.4319 meters: total link distance: 1 km; Obstacle distance: 0.5 km Frequency: 915 MHz.

Downloads

Download data is not yet available.

References

Aden Hassan, A., & Karlsson Källqvist, R. (2019). Evaluating LoRa Physical as a Radio Link Technology for use in a Remote-Controlled Electric Switch System for a Network Bridge Radio-Node.

Almuhaya, M. A., Jabbar, W. A., Sulaiman, N., & Abdulmalek, S. (2022). A Survey on LoRaWAN Technology: Recent Trends, Opportunities, Simulation Tools and Future Directions. Electronics, 11(1), 164.

Baek, J., & Choi, Y. (2018). A New GIS-Based Algorithm to Support Initial Transmitter Layout Design in Open-Pit Mines. Energies, 11(11), 3063.

Baek, J., & Choi, Y. (2018). Comparison of Communication Viewsheds Derived from High-Resolution Digital Surface Models Using Line-of-Sight, 2D Fresnel Zone, and 3D Fresnel Zone Analysis. ISPRS International Journal of Geo-Information, 7(8), 322.

Balacco, J. (2011). Radio enlaces digitales en un entorno urbano y suburbano (Doctoral dissertation, Universidad Nacional de La Plata).

Barriquello, C. H., e Silva, F. E. S., Bernardon, D. P., Canha, L. N., Ramos, M. J. D. S., & Porto, D. S. (2018). Fundamentals of wireless communication link design for networked robotics. Service Robots, 127-142.

Dai, Z., Saputra, M. R. U., Lu, C. X., Markham, A., & Trigoni, N. (2021). Deep Odometry Systems on Edge with EKF-LoRa Backend for Real-Time Positioning in Adverse Environment. arXiv preprint arXiv:2112.05665

Davide, M. A. G. R. I. N. (2017). Network level performances of a LoRa system. Directores: Lorenzo Vangelista.

Elijah, O., Rahim, S. K. A., Sittakul, V., Al-Samman, A. M., Cheffena, M., Din, J. B., & Tharek, A. R. (2021). Effect of weather condition on Lora IoT communication technology in a tropical region: Malaysia. IEEE Access, 9, 72835-72843.

Ezeh, I. H., Friday, N., & Runcie, A. (2017). Mathematical Model for Equivalent Fresnel Zone Line of Sight Percentage Clearance for Terrestrial Point-to-Point Line-of-Sight Communication Link. World, 2(2), 27-31.

Hernández, J. C., & Parrao, E. (2007). Diseño de enlace terrestre por línea de vista. SEMINARIO DE TITULACION.

Hudiono, H., Taufik, M., Perdana, R. H. Y., & Rakhmania, A. E. (2021). Digital centralized water meter using 433 MHz LoRa. Bulletin of Electrical Engineering and Informatics, 10(4), 2062-2071.

Jiang, L. (2020). Comparision of LoRa and NB-IoT in Terms of Connectivity.

Khutsoane, O., Isong, B., & Abu-Mahfouz, A. M. (2017, October). IoT devices and applications based on LoRa/LoRaWAN. In IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society (pp. 6107-6112). IEEE.

Leija Hernández, G., López Bonilla, J. L., & Iturri Hinojosa, L. A. (2014). Metodología para el cálculo adecuado de las alturas de antenas en un radioenlace de microondas en Línea de Vista. Nova scientia, 6(12), 1-12.

Pickering, P. "Develop with LoRa for Low-rate, long-range IoT applications." (2017).

Sanchez-Iborra, R., & Cano, M. D. (2016). State of the art in LP-WAN solutions for industrial IoT services. Sensors, 16(5), 708.

Sanchez-Iborra, R., Sanchez-Gomez, J., Ballesta-Viñas, J., Cano, M. D., & Skarmeta, A. F. (2018). Performance evaluation of LoRa considering scenario conditions. Sensors, 18(3), 772.

Tian, P., Yang, F., Ma, X., Boano, C. A., Tian, X., Liu, Y., & Wei, J. (2021, November). Environmental Impact on the Long-Term Connectivity and Link Quality of an Outdoor LoRa Network. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems (pp. 565-568).

Published
2022-11-30
How to Cite
Pérez-Trujillo, C. E., Galicia-Santos, L. M., Leon-Paredes, R., Cárdenas-Valdez, J. R., & Calvillo-Téllez, A. (2022). Coverage of Fresnel clarity in LoRa IoT . Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial6), 134-138. https://doi.org/10.29057/icbi.v10iEspecial6.9211