Magnetocaloric behaviour of cobalt-doped lanthanum-strontium manganites.

Keywords: Magnetic refrigeration, magnetocaloric, manganite

Abstract

Magnetic refrigeration is one of the technologies with the greatest commercial potential, the application of this technology has not been realized due to the need to have magnetocaloric materials that work at room temperature (300 K) and with low magnetic fields (< 2 T). In this work was analyzed the effect of Co3+ substitution in Mn3+ positions in the lanthanum-strontium manganite, La0.3Sr0.7CoxMn1-xO3 with x from 0.05 to 0.2 mol, with the objective of decreasing the working temperature, keeping the magnetic entropy value above 2.5 J/kg∙K and the cooling capacity higher than 80 J/K. By XRD and its analysis by Rietveld refinement, orthorhombic phases were confirmed for all concentrations. Vibrating sample magnetometry showed ferromagnetic order at room temperature and the Curie temperature decreased to 300 K for the concentration of x= 0.15, this suggests that the material may be a good candidate for magnetic refrigeration applications.

Downloads

Download data is not yet available.

References

Afify, M. S., El faham, M. M., Eldemerdash, U., El Rouby, W. M. A., El-Dek, S. I., (2021). Room temperature ferromagnetism in Ag doped LaMnO3 nanoparticles. Journal of alloys and compounds 861, 158570. DOI: 10.1016/j.jallcom.2020.158570

Al-Yahmadi, I. Z., Gismelseed, A. M., Al Ma’Mari, F., Al-Rawas, A. D., Al-Harthi, S. H., Yousif, A. Y., Myint, M. T. Z., (2021). Structural, magnetic and magnetocaloric effect studies of Nd0.6Sr0.4AxMn1-xO3 (A = Co, Ni, Zn) perovskite manganites. Journal of alloys and compounds 875, 169977. DOI: 10.1016/j.jallcom.2021.159977

Benford, S. M., Brown, G. V., (1981). T-S diagram for gadolinium near the Curie temperature. Journal of applied physics 52(3), 2110-2112. DOI: 10.1063/1.329633

Bolarín-Miró, A. M., Sánchez-de Jesús, F., Ponce, A., Martinez, E. E., (2007). Mechanosynthesis of Lanthanum Manganite. Materials science and engineering: A 454-455, 69-74. DOI: 10.1016/j.msea.2006.12.062

Bolarín-Miró, A. M., Taboada-Moreno, C. A., Cortés-Escobedo, C. A., Rosales-González, O., Torres-Villaseñor, G., Sánchez-De Jesús, F., (2020). Effect of high-energy ball milling on magnetocaloric properties of La0.7Ca0.2Sr0.1MnO3. Applied Physics A 126, 369. DOI: 10.1007/s00339-020-03555-w

Chau, N., Niem. P. Q., Nhat, H. N., Luong, N. H., Tho, N. D., (2003). Influence of Cu substitution for Mn on the structure, magnetic, magnetocaloric and magnetoresistance properties of La0.7Sr0.3MnO3 perovskites. Physica B: Condensed matter 327, 214-217. DOI: 10.1016/s0921-4526(02)01731-3

Chen, X. G., Fu, J. B., Yun, C., Zhao, H., Yang, Y. B., Du, H. L., Yang, j. B., (2014). Magnetic and transport properties of cobalt doped La0.7Sr0.3MnO3. Journal of applied physics 116(10), 103907. DOI: 10.1063/1.4894713

Daengsakul, S., Mongkolkachit, C., Thomas, C., Siri, S., Thomas, I., Amornkitbamrung, V., Maensiri, S., (2009). A simple thermal decomposition synthesis, magnetic properties, and cytotoxicity of La0.7Sr0.3MnO3 nanoparticles. Applied physics A 96, 691. DOI: 10.1007/s00339-009-5151-0

Feng, J. W., Ye, C., Hwang, L. P., (2000). Magnetic and magnetotransport properties in the Ni-doped La0.7Sr0.3MnO3 system. Physical review B 61(18), 12271-12276. DOI: 10.1103/physrevb.61.12271

Ghosh, K., Lobb, C. J., Greene, R. L., Karabashev, S. G., Shulyatev, D. A., Arsenov, A. A., Mukovskii, Y., (1998). Critical Phenomena in the Double-Exchange Ferromagnet La0.7Sr0.3MnO3. Physical review letters 81, 4740-4743

DOI: 10.1103/physrevlett.81.4740

Gschneidner, K. A., Pecharsky V. K., (1999). Magnetic refrigeration materials (invited). Journal of applied physics 85(8), 5365-5368. DOI:10.1063/1.369979

Jonker, G. H., Van Santen, J. H., (1950). Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337-349. DOI: 10.1016/0031-8914(50)90033-4

Olarte, J. A., (2011). Efectos de las tensiones en manganitas de LaMn1-xCoxO3 (0 ≤ x ≤ 0.5). Visión electrónica 6(1), 4752.

Phuc, N. X., Bau, L. V., Khiem, N. V., Son, L. H., Nam, D. N. H., (2003). Magnetic and transport properties of La0.7Sr0.3Co1-yMnyO3 no double exchange between Mn and Co. Physica B: Condensed matter 327(2-4), 177-182. DOI: 10.1016/s0921-4526(02)01721-0

Taboada-Moreno, C. A., Sanchez-De Jesús, F., Pedro-García, F., Cortés-Escobedo, C. A., Betancourt-Cantera, J. A., Ramírez-Cardona, M., Bolarín-Miró, A. M., (2020). Large magnetocaloric effect near to room temperature in Sr2+ doped La0.7Ca0.3MnO3. Journal of Magnetism and Magnetic Materials 496, 165887. DOI: 10.1016/j.jmmm.2019.165887

Yang, J. B., Kim, M. S., Creel, T. F., Zhao, H., Chen, X. G., Yelon, W. B., James, W. J., (2016). Structural, magnetic and transport properties of B-site substituted perovskite La0.7Sr0.3MnO3. Perovskite materials-synthesis, characterization, properties and applications. DOI: 10.5772/61770

Zhao, B. C., Song, W. H., Ma, Y. Q., Zhang, R. L., Yang, J., Sheng, Z. G., Sun, Y. P., (2005). Magnetic and transport properties of the Co-doped manganite La0.7Sr0.3Mn1-xCoxO3 (0 ≤ x ≤ 0.5). Physica status solid (b) 242(8), 1719-1727. DOI: 10.1002/pssb.200440052

Published
2022-12-12
How to Cite
González-García, I., Sánchez-De Jesús, F., Rosales-González , O., Cortés-Escobedo , C. A., & Bolarín-Miró, A. M. (2022). Magnetocaloric behaviour of cobalt-doped lanthanum-strontium manganites. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial7), 109-112. https://doi.org/10.29057/icbi.v10iEspecial7.9932

Most read articles by the same author(s)