Development of an automatic irrigation system as an educational resource for the digital electronics subject

Keywords: Digital electronics, Microcontroller, irrigation, counter

Abstract

This paper deals with the development of a didactic precision agricultural irrigation control system using fundamental electronic devices that are typically presented and analysed in a digital electronics course. The project integrates the application of latches, counters and decoders focused on controlling an agricultural production system. Through the developed system, the amount of water supplied to a plant is controlled, using soil moisture as a monitoring variable for the water irrigation system. The calibration of the irrigation system allowed to identify that each of irrigation activation provides an amount of 0.25 milliliters of water, which allowed efficiently use of watering through the implementation using computational techniques and hardware devices. The system can be modified and adapted to other agricultural systems to regulate the supply of nutrient solutions or liquid fertilizers.

Downloads

Download data is not yet available.

References

Barba-Pingarrón, A., Agredo-Díaz, D. G., González-Parra, R., Covelo-Villar, A., Hernández-Gallegos, M. A., & Valdez-Navarro, R. (2022). Experiencias y propuestas para la enseñanza a distancia de dos asignaturas optativas, del área de materiales, a estudiantes de ingeniería. DYNA, 89(222), 222. https://doi.org/10.15446/dyna.v89n222.101326

Borodzhieva ,A. N., Tsvetkova, I. D., Stoev, I. I. & Zaharieva, S. L. (2020). Interactive Teaching Methods Used in the Course Digital Electronics. 2020 XI National Conference with International Participation (ELECTRONICA), 1–4. https://doi.org/10.1109/ELECTRONICA50406.2020.9305131

Brambilla, M., Romano, E., Buccheri, M., Cutini, M., Toscano, P., Cacini, S., Massa, D., Ferri, S., Monarca, D., Fedrizzi, M., Burchi, G., & Bisaglia, C. (2021). Application of a low-cost RGB sensor to detect basil (Ocimum basilicum L.) nutritional status at pilot scale level. Precision Agriculture, 22(3), 734–753. https://doi.org/10.1007/s11119-020-09752-0

Duarte, T. F., Silva, T. J. A., Bonfim-Silva, E. M., & Koetz, M. (2021). Using Arduino sensors to monitor vacuum gauge and soil water moisture. DYNA, 88(219), 219. https://doi.org/10.15446/dyna.v88n219.94121

Flores Mollo, S., & Aracena Pizarro, D. (2018). Sistema de monitoreo remoto de acuicultura en estanques para la crianza de camarones. Ingeniare. Revista chilena de ingeniería, 26, 55–64. https://doi.org/10.4067/S0718-33052018000500055

Fu, L., Zhang, X., Majeed, Y., & Li, R. (2019). Interactive Teaching of Digital Electronics in Agricultural Universities in China. International Journal of Emerging Technologies in Learning (IJET), 14(05), 176–187. https://doi.org/10.3991/ijet.v14i05.8855

Itagi, A. R., & Tatti, V. (2015). Effective Teaching of Digital Electronics for Undergraduate Students Using a Free Circuit Simulation Software—SEQUEL. In R. Natarajan (Ed.), Proceedings of the International Conference on Transformations in Engineering Education (pp. 627–627). Springer India.

Kohl, C. (2019). Utilizing an Individually Built Mobile Robot in the Laboratory of an Advanced Digital Logic Design Course in Conjunction with a Final Class Competition. Conference Proceedings of the ASEE Conference and Exposition. https://digitalcommons.cedarville.edu/engineering_and_computer_science_publications/411

Kothawade, S. N., Furkhan, S. M., Raoof, A., & Mhaske, K. S., (2016). Efficient water management for greenland using soil moisture sensor. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 1–4. https://doi.org/10.1109/ICPEICES.2016.7853281

Liu, Q. (2014). Reform of experiment-based teaching of electronics. World Transactions on Engineering and Technology Education, 12(4), 5.

Martínez, J., Egea, G., Agüera, J., & Pérez-Ruiz, M. (2017). A cost-effective canopy temperature measurement system for precision agriculture: A case study on sugar beet. Precision Agriculture, 18(1), 95–110. https://doi.org/10.1007/s11119-016-9470-9

Monroy-Varela, S. E., Gallego-Vega, L. E., Amórtegui-Gil, F. J., Vega-Herrera, J. M., & Díaz-Morales, H. (2022). Impact of the COVID 19 pandemic on the student’s academic performance. Case at the School of Engineering—Universidad Nacional de Colombia

Bogotá Campus. DYNA, 89(222), 222. https://doi.org/10.15446/dyna.v89n222.101308

Mwikirize, C., Tumusiime, A. A., Musasizi, P. I., Tickodri-Togboa, S. S., Katumba, A., & Butime, J. (2010). New Dimensions in Teaching Digital Electronics: A Multimode Laboratory Utilizing NI ELVIS IITM, LabVIEW and NI Multisim. International Journal of Online and Biomedical Engineering (IJOE), 6(4), 49–54. https://doi.org/10.3991/ijoe.v6i4.1396

Poole, N. R. (1994). The application of simulators in teaching digital electronics. Engineering Science & Education Journal, 3(4), 177-184(7).

Ruman, M. R., Barua, A., Rahman Recent, M. R., Rahman, W., Islam, M. R., & Shuvo, R. H.. (2019). Implementation of an Advanced Irrigation System with Logical Output. 2019 IEEE International Conference on Robotics, Automation, Artificial-Intelligence and Internet-of-Things (RAAICON), 160–163. https://doi.org/10.1109/RAAICON48939.2019.71

Sengupta, A., Debnath, B., Das, A. & De, D., (2021). FarmFox: A Quad-Sensor-Based IoT Box for Precision Agriculture. IEEE Consumer Electronics Magazine, 10(4), 63–68. https://doi.org/10.1109/MCE.2021.3064818

Simanjuntak, P. P., Napitupulu, P. T., Silalahi, S. P., Kisno, Pasaribu, N., & Valešová, L. (2017). E-precision agriculture for small scale cash crops in Tobasa regency. IOP Conference Series: Materials Science and Engineering, 237, 012034. https://doi.org/10.1088/1757-899x/237/1/012034

Wang, G. (2011). Bridging the gap between textbook and real applications: A teaching methodology in digital electronics education. Computer Applications in Engineering Education, 19(2), 268–279. https://doi.org/10.1002/cae.20308

Published
2024-01-05
How to Cite
Serrano-Pérez, E. (2024). Development of an automatic irrigation system as an educational resource for the digital electronics subject. Ingenio Y Conciencia Boletín Científico De La Escuela Superior Ciudad Sahagún, 11(21), 116-121. https://doi.org/10.29057/escs.v11i21.10920