Comparison and analysis of diffusion models for the Fe2B layers formed on the AISI 12L14 steel by using powder-pack technique

Keywords: Diffusion model, Activation energy, Parabolic growth law, Diffusion coefficient

Abstract

Boriding is a thermochemical surface treatment, a diffusion process similar to carburizing and nitriding in that boron is diffused into a metal base. An indispensable tool to choose the suitable process parameters for obtaining boride layer of an adequate thickness is the modeling of the boriding kinetics. Moreover, the simulation of the growth kinetics of boride layers has gained great interest in the recent years. In this manuscript, the AISI 12L14 steel was pack-borided in the temperature range of 1123-1273 K for treatments times between 2 and 8 h. A parabolic law for the kinetics of growth of Fe2B layers formed on the surface of AISI 12L14 steel was deducted. Two diffusion models were proposed for estimating the boron diffusion coefficients through the Fe2B layers. The measurements of the thickness (Fe2B), for different temperature of boriding, were used for calculations. As a result, the boron activation energy for the AISI 12L14 steel was estimated as 165.0 kJ/mol. In addition, to extend the validity of the present models, two additional boriding conditions were done. The Fe2B layers grown on AISI 12L14 steel were characterized by use of the following experimental techniques: X-Ray Diffraction, Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy.

 

Downloads

Download data is not yet available.

References

Wahl G. Boronizing, A Method for the Production of Hard Surfaces for Extreme Wear. Durferrit-Technical Information. Germany: Reprint from VDI-Z117; 1975, p. 785-789.

Graf von Matuschka A. Boronizing. 1st ed. Munich: Carl Hanser Verlag; 1980.

Referencias

Wahl G. Boronizing, A Method for the Production of Hard Surfaces for Extreme Wear. Durferrit-Technical Information. Germany: Reprint from VDI-Z117; 1975, p. 785-789.

Graf von Matuschka A. Boronizing. 1st ed. Munich: Carl Hanser Verlag; 1980.

Davis J R, Surface Hardening of Steels Understanding the Basics. USA: ASM International. 2002, p. 213-223.

Singhal S C, A hard diffusion boride coating for ferrous materials. Thin Solid Films. 1977; 45: 321–329.

Genel K, Ozbek I, Bindal C, Kinetics of boriding of AISI W1 steel. Materials Science and Engineering. 2003; A347: 311-314. DOI: 10.1016/S0921-5093(02)00607-X

Yapar U, Arısoy C F, Basman G, Yesilcubuk S A, and Sesen M K, Influence of Boronizing on Mechanical Properties of En-C35e Steel. Key Engineering Materials. 2004; 264-268: 633-636. DOI: 10.4028/www.scientific.net/KEM.264-268.629

Fichtl W, Boronizing and its practical application. Rev. Int. Hautes Temper. 1980; 17: 33–43. DOI: 10.1016/0261-3069(81)90034-0

Campos-Silva I, Ortiz-Domínguez M, López-Perrusquia N, Meneses-Amador A, Escobar-Galindo R, Martínez-Trinidad J, Characterization of AISI 4140 borided steels. Applied Surface Science. 2010; 256: 2372-2379. DOI: 10.1016/j.apsusc.2009.10.070

Kulka M, Makuch N, Pertek A, Maldzinski L, Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2-BCl3 atmosphere. Journal of Solid State Chemistry. 2013; 199: 196-203. DOI: 10.1016/j.jssc.2012.12.029

Brakman C M, Gommers A W J, Mittemeijer E J, Boriding Fe and Fe-C, Fe-Cr, and Fe-Ni alloys; Boride-layer growth kinetics. J. Mater. Res. 1989; 4: 1354-1370. DOI: 10.1557/JMR.1989.1354

Yu L G, Chen X J, Khor K A, Sundararajan G. FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics. Acta Materialia. 2005; 53: 2361-2368. DOI: 10.1016/j.actamat.2005.01.043

Massalski T B, Binary Alloy Phase Diagrams, USA: ASM International, Materials Park, Ohio; 1990, p. 280. DOI: 10.1002/adma.19910031215

Okamoto H, B-Fe (Boron-Iron). Journal of Phase Equilibria and Diffusion. 2004; 25: 297-298. DOI: 10.1007/s11669-004-0128-3

Dybkov V I, Reaction Diffusion and Solid State Chemical Kinetics. Switzerland-UK-USA: Trans Tech Publications. 2010; p. 7. DOI: https://doi.org/10.4028/www.scientific.net/MSFo.67-68

Jost W, Diffusion in Solids, Liquids, Gases. New York: Academic Press Inc. 1960; p. 69-72. DOI: https://doi.org/10.1002/ange.19530651912

Shewmon P. Diffusion in Solids, USA: Minerals. Metals and Materials Society. 1989; p. 40.

Porter D A, Easterling K E. Phase Transformations in Metals and Alloys. London: Chapman and Hall. 1981; p. 105.

Martini C, Palombarini G, Carbucicchio M, Mechanism of thermochemical growth of iron borides on iron. Journal of Materials Science. 2004; 39: 933– 937. DOI: 10.1023/B:JMSC.0000012924.74578.87

Palombarini G, and Carbucicchio M, Growth of boride coatings on iron. Journal of Materials Science Letter. 1987; 6;415-416. DOI: 10.1007/BF01756781

Ortiz Domínguez M. Contribución de la Modelación Matemática en el Tratamiento Termoquímico de Borurización [thesis]. México: SEPI-ESIME from the Instituto Politécnico Nacional; 2013.

Campos-Silva I, Bravo-Bárcenas D, Meneses-Amador A., Ortiz-Dominguez M., Cimenoglu H., Figueroa-López U., Andraca-Adame J, Growth kinetics and mechanical properties of boride layers formed at the surface of the ASTM F-75 biomedical alloy. Surface and Coatings Technology. 2013; 237: 402-414. DOI: 10.1016/j.surfcoat.2013.06.083

Campos-Silva I, Ortiz-Domínguez M, Bravo-Bárcenas O, Doñu-Ruiz M A, Bravo-Bárcenas D, Tapia-Quintero C, Jiménez-Reyes M Y, Formation and kinetics of FeB/Fe2B layers and diffusion zone at the surface of AISI 316 borided steels. Surface and Coatings Technology. 2010; 205: 403-412. DOI: 10.1016/j.surfcoat.2010.06.068

Eyre T S, Effect of boronising on friction and wear of ferrous metals. Wear. 1975; 34(3): 383-397. DOI: 10.1016/0043-1648(75)90105-2

Dukarevich I S, Mozharov M V, Shigarev A S, Redistribution of Elements In Boride Coatings. Metallovedenie Termicheskaya i Obrabotka Metallov. 1973; 2: 164-166. https://doi.org/10.1007/BF00679753

Elias-Espinosa M, Ortiz-Domínguez M, Keddam M, Flores-Rentería M A, Damián-Mejía O, Zuno-Silva J, Hernández-Ávila J, Cardoso-Legorreta E, Arenas-Flores A, Growth Kinetics of the Fe2B Layers and Adhesion on Armco Iron Substrate. Journal of Materials Engineering and Performance. 2014; 23: 2943-2952. DOI: 10.1007/s11665-014-1052-2

Ortiz-Domínguez M, Keddam M, Elias-Espinosa M, Damián-Mejía O, Flores-Rentería M A, Arenas-Flores A, Hernández-Ávila J, Investigation of boriding kinetics of AISI D2 steel. Surface Engineering. 2014; 30: 490-497. DOI: 10.1179/1743294414Y.0000000273

Ortiz-Domínguez M, Flores-Rentería M A, Keddam M, Elias-Espinosa M, Damián-Mejía O, Aldana-González J I, Zuno-Silva J, Medina-Moreno S A, González-Reyes J G, Simulation of growth kinetics of Fe2B layers formed on gray cast iron during the powder-pack boriding. Materiali in Tehnologije/Materials and Technology. 2014; 48(6): 905-916. DOI: http://mit.imt.si/Revija/izvodi/mit146/ortiz.pdf

Campos-Silva I, Ortiz-Domínguez M, Tapia-Quintero C, Rodriguez-Castro G, Jimenez-Reyes M Y, Chavez-Gutierrez E, Kinetics and boron diffusion in the FeB/Fe2B layers formed at the surface of borided high-alloy steel. Journal of Materials Engineering and Performance. 2012; 21: 1714-1723. DOI: 10.1007/s11665-011-0088-9

Ferraro G, The Rise and Development of the Theory of Series up to the Early 1820s. Denmark: Springer. 2008, p. 147-149. DOI: 10.1007/978-0-387-73468-2

Rubin W. Real and complex analysis, USA: McGraw-Hill. 1987: p. 1. DOI: https://59clc.files.wordpress.com/2011/01/real-and-complex-analysis.pdf

Published
2019-07-05
How to Cite
Ortiz Dominguez, M. (2019). Comparison and analysis of diffusion models for the Fe2B layers formed on the AISI 12L14 steel by using powder-pack technique. Ingenio Y Conciencia Boletín Científico De La Escuela Superior Ciudad Sahagún, 6(12), 1-14. https://doi.org/10.29057/escs.v6i12.4008