Cómputo reconfigurable en la aceleración de herramientas de Mapeo de ADN
DOI:
https://doi.org/10.29057/xikua.v13i26.14844Palabras clave:
Cómputo reconfigurable, Herramientas de Mapeo de ADN, FPGA, BioinformáticaResumen
La extracción del código genético a partir del núcleo celular es conocido como secuenciación de ADN y es un tema de investigación actual relevante a nivel mundial dada la importancia que representa. Uno de los pasos de la secuenciación consiste en alinear millones de secuencias cortas a genomas completos de varios cientos de millones de nucleótidos mediante complejos programas informáticos denominados Alineadores o Mapeadores de ADN. No obstante, sus tiempos de ejecución aún son muy largos comparados con la velocidad en que las máquinas NGS producen las secuencias, lo que los convierte en el cuello de botella del proceso general de análisis de ADN. En este artículo se revisa sistemáticamente el uso del cómputo reconfigurable utilizando FPGAs para acelerar herramientas de alineación de lecturas cortas de ADN, identificando los principales algoritmos que se han podido implementar de manera eficiente dentro de cada una de las etapas de tales herramientas, así como los factores de aceleración logrados. Se espera que este artículo sirva de base a futuras investigaciones relacionadas.
Descargas
Información de Publicación
Perfiles de revisores N/D
Declaraciones del autor
Indexado en
- Sociedad académica
- N/D
Citas
Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, ... & Malonia S K. (2023). Next-generation sequencing technology: current trends and advancements. Biology, 12(7), 997.
Logsdon, GA, Vollger, MR, Eichler EE. (2020). Long-read human genome sequencing and its applications. Nature Reviews Genetics, 21(10), 597-614.
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol. 10(3) (2009) R25. 23
Campagna D et al. PASS: a program to align short sequences, Bioinformatics 25(7) (2009) 967–968. 25
Weese D, Emde AK, Rausch T, Döring A, Reinert K. RazerS—fast read mapping with sensitivity control, Genome Res. 19(9) (2009) 1646–1654. 26
Alkan C et al., Personalized copy number and segmental duplication maps using next-generation sequencing, Nat. Genet. 41(10) (2009) 1061–1067. 27
Rizk G, Lavenier D. GASSST: global alignment short sequence search tool, Bioinformatics 26(20) (2010) 2534–2540. 28
Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform, Bioinformatics 26(5) (2010) 589–595. 29
Lee WP et al., MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping, PloS One 9(3) (2014) e90581. 31
Luo R, Wong T, Zhu J, Liu C M, Zhu X, Wu E, Lee LK, Lin H, Zhu W, Cheung DW et al. "Soap3-dp: fast accurate and sensitive gpu-based short read aligner", PloS one, vol. 8, no. 5, pp. e65632, 2013.
Liu B et al., deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index, Genome Biol. 20(1) (2019) 274. 32
Chakraborty A, Bandyopadhyay S. conLSH: Context based Locality Sensitive Hashing for mapping of noisy SMRT reads, Comput. Biol. Chem. 85 (2020) 107206. 33
Ferragina P, Manzini G, Mäkinen V, Navarro G. (2004, October). An alphabet-friendly FM-index. In International Symposium on String Processing and Information Retrieval (pp. 150-160). Berlin, Heidelberg: Springer Berlin Heidelberg.
Smith TF, Waterman MF. Identification of common molecular subsequences, J. Mol. Biol. 147(1) (1981) 195–197.
Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins, J. Mol. Biol. 48(3) (1970) 443–453.
Marçais G et al., MUMmer4: A fast and versatile genome alignment system, PLoS Comput. Biol. 14(1) (2018) e1005944.
Xin H et al., Accelerating read mapping with FastHASH, BMC Genom. 14(1) (2013) S13.
Puttegowda K et al., A run-time reconfigurable system for gene-sequence searching, in Proc 16th Int Conf VLSI Design, New Delhi, India (2003), pp. 561–566.
Yu CW, Kwong KH, Lee KH, Leong PHW, A Smith-Waterman systolic cell. In Proc. Field Programmable Logic and Application: 13th International Conference, Lisbon, Portugal (2003), pp. 375-384.
Caffarena G, Pedreira C, Carreras C, Bojanic S, Nieto-Taladriz O. FPGA acceleration for DNA sequence alignment, J. Circuits Syst. Comput. 16(02) (2007) 245–266.
Oliver TF, Schmidt B, Maskell DL. Reconfigurable architectures for bio-sequence database scanning on FPGAs, IEEE Trans Circuits Syst II: Express Br. 52(12) (2005) 851–855.
Van-Court T, Herbordt MC, Families of FPGA-based accelerators for approximate string matching, Microprocess Microsyst 31(2) (2007) 135–145.
Jiang X, Liu X, Xu L, Zhang P, Sun N. A reconfigurable accelerator for smith–waterman algorithm, IEEE Trans. Circuits Syst. II: Express Br. 54(12) (2007) 1077–1081.
Li IT, Shum W, Truong K. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA), BMC Bioinform. 8 (2007) 185.
Benkrid K, Liu Y, Benkrid A. A highly parameterized and efficient FPGA-based skeleton for pairwise biological sequence alignment, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17(4) (2009) 561–570.
Pacheco-Bautista D, Carreño-Aguilera R, Aguilar-Acevedo F, Algredo-Badillo I. Bit-Vector-Based Hardware Accelerator for DNA Alignment Tools, J. Circuits Syst. Comput. 30(5) (2021) 2150087.
Fei X, Dan Z, Lina L, Xin M, Chunlei Z. FPGASW: accelerating large-scale Smith–Waterman sequence alignment application with backtracking on FPGA linear systolic array, Interdiscip. Sci. 10(1) (2018) 176–188.
Rucci E et al., M, SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL for long DNA sequences, BMC Syst. Biol. 12(5) (2018) 43–53.
Alser M et al., GateKeeper: a new hardware architecture for accelerating pre-alignment in DNA short read mapping, Bioinformatics 33(21) (2017) 3355–3363.
Alser M, Hassan H, Kumar A, Mutlu U, Alkan C. Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 35(21) (2019) 4255–4263.
Alser M, Shahroodi T, Gómez-Luna J, Alkan C, Mutlu. SneakySnake: a fast and accurate universal genome pre-alignment filter for CPUs, GPUs and FPGAs, Bioinformatics 36(22–23) (2020) 5282-5290.
Castells-Rufas D., Marco-Sola S, Moure JC, Aguado Q, Espinosa A. FPGA Acceleration of Pre-Alignment Filters for Short Read Mapping With HLS, IEEE Access 10 (2022) 22079–22100.
Arram J, Kaplan T, Luk W, Jiang P. (2016). Leveraging FPGAs for accelerating short read alignment. IEEE/ACM transactions on computational biology and bioinformatics, 14(3), 668-677.
Yang CH, Wu YC, Chen YL, Lee CH, Hung JH, Yang CH. (2023). An FM-Index Based High-Throughput Memory-Efficient FPGA Accelerator for Paired-End Short-Read Mapping. IEEE Transactions on Biomedical Circuits and Systems.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Daniel Pacheco Bautista, Francisco Aguilar Acevedo, Yuliana García Amaya, Efraín Dueñas Reyes

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.