Aguamiel como edulcorante natural: revisión narrativa de sus propiedades nutricionales, glicémicas y tecnológicas frente a otros endulzantes

Autores/as

DOI:

https://doi.org/10.29057/xikua.v14i27.15572

Palabras clave:

Prebióticos, índice glucémico, capacidad antioxidante, sostenibilidad alimentaria, alimentos funcionales

Resumen

Los edulcorantes naturales han despertado interés como alternativas a los azúcares refinados debido a sus propiedades nutricionales y funcionales. Sin embargo, el conocimiento científico del aguamiel sigue siendo limitado en comparación con la miel, el jarabe de arce y el azúcar de coco. Esta revisión tuvo como objetivo analizar la composición química, el índice glucémico, las propiedades tecnológicas, los efectos funcionales y la sostenibilidad del aguamiel en comparación con otros edulcorantes naturales, sintetizando la evidencia publicada entre 2015 y 2025 en ciencia de los alimentos y nutrición. Se revisó sistemáticamente la literatura para describir su perfil de azúcares, contenido de minerales y compuestos bioactivos, respuesta glucémica, comportamiento tecnológico, características sensoriales, efectos metabólicos, potencial prebiótico e implicaciones ambientales. Se reportó que el aguamiel contiene más fructosa y glucosa, y que los fructanos de tipo inulina proporcionan efectos prebióticos ausentes en la miel y el jarabe de arce. Presentó un bajo índice glucémico, lo que contribuye a un mejor control de la glucosa posprandial y a una modulación beneficiosa del metabolismo lipídico, la inflamación y la microbiota intestinal. Tecnológicamente, el aguamiel mostró menor viscosidad y estabilidad térmica, lo que permitió conservar compuestos bioactivos bajo procesamiento controlado, aunque con menor complejidad sensorial que la miel o el jarabe de arce. Funcionalmente, demostró efectos antioxidantes, antihipertensivos y reguladores metabólicos, mientras que su producción en entornos áridos requirió mínimo consumo de agua y promovió estrategias de economía circular con subproductos del agave. En conclusión, el aguamiel se perfila como un edulcorante natural prometedor con beneficios nutricionales, funcionales y ambientales. Futuras investigaciones deberían validar sus efectos metabólicos en entornos clínicos y optimizar su procesamiento para mejorar la aceptación sensorial.

Descargas

Los datos de descargas todavía no están disponibles.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
41%
33%
Días hasta la publicación 
158
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D

Citas

[1] Saraiva A, Carrascosa C, Ramos F, Raheem D, Raposo A. Agave Syrup: Chemical Analysis and Nutritional Profile, Applications in the Food Industry and Health Impacts. Int J Environ Res Public Health 2022;19:7022. https://doi.org/10.3390/ijerph19127022.

[2] Saraiva A, Carrascosa C, Raheem D, Ramos F, Raposo A. Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts. Int J Environ Res Public Health 2020;17:6285. https://doi.org/10.3390/ijerph17176285.

[3] Sadhu P, Rathod F, Kumari M, Shah N, Talele C, Aundhia C. Exploring Stevia: A Natural Sweetener with Multifaceted Health Benefits. J Nat Remedies 2024:757–64. https://doi.org/10.18311/jnr/2024/36196.

[4] Pham H, Phillips LK, Jones KL. Acute Effects of Nutritive and Non-Nutritive Sweeteners on Postprandial Blood Pressure. Nutrients 2019;11:1717. https://doi.org/10.3390/nu11081717.

[5] Hernández-Ramos L, García-Mateos R, Ybarra-Moncada MaC, Colinas-León MT. Nutritional value and antioxidant activity of the maguey syrup (Agave salmiana and A. mapisaga) obtained through three treatments. Not Bot Horti Agrobot Cluj-Napoca 2020;48:1306–16. https://doi.org/10.15835/nbha48311947.

[6] Valle M, St-Pierre P, Pilon G, Marette A. Differential Effects of Chronic Ingestion of Refined Sugars versus Natural Sweeteners on Insulin Resistance and Hepatic Steatosis in a Rat Model of Diet-Induced Obesity. Nutrients 2020;12:2292. https://doi.org/10.3390/nu12082292.

[7] Rojas-Rivas E, Viesca-González FC, Favila-Cisneros HJ, Cuffia F. Consumers’ perception of a traditional fermented beverage in Central Mexico: An exploratory study with the case of pulque. Br Food J 2019;122:708–21. https://doi.org/10.1108/bfj-05-2019-0317.

[8] Santos‐Zea L, Rosas‐Pérez AM, Leal‐Díaz AM, Gutiérrez‐Uribe JA. Variability in Saponin Content, Cancer Antiproliferative Activity and Physicochemical Properties of Concentrated Agave Sap. J Food Sci 2016;81. https://doi.org/10.1111/1750-3841.13376.

[9] Ramírez-Peñaloza S, Pérez-Ruiz RV, Ruiz-Hernández R, Aguilar-Toalá JE, Fabela-Morón MF, Díaz-Ramírez M. Effect of sugar substitution by aguamiel on the physicochemical quality of pear jam pear (Pyrus communis L.). Agro Product 2022. https://doi.org/10.32854/agrop.v15i11.2446.

[10] Mora MR, Dando R. The sensory properties and metabolic impact of natural and synthetic sweeteners. Compr Rev Food Sci Food Saf 2021;20:1554–83. https://doi.org/10.1111/1541-4337.12703.

[11] Salazar Llorente EJ, Alvarado Álvarez HJ, Castro Cano JM, Sosa Arias BM, Puga Lascano SA. Evaluation of hydroxymethylfurfural content in commercial and artisanal bee honey from Los Ríos-Babahoyo. Bionatura 2023;8:1–8. https://doi.org/10.21931/rb/2023.08.01.4.

[12] Garcia EJ, McDowell T, Ketola C, Jennings M, Miller JD, Renaud JB. Metabolomics reveals chemical changes in Acer saccharum sap over a maple syrup production season. PLOS ONE 2020;15:e0235787. https://doi.org/10.1371/journal.pone.0235787.

[13] Garfa A, Silvestro R, Sassamoto Kurokawa SY, Rossi S, Deslauriers A, Lavoie S. Sugar Maple and Red Maple Face-Off: Which Produces More and Sweeter Sap? Appl Sci 2025;15:1091. https://doi.org/10.3390/app15031091.

[14] Yamamoto T, Sato K, Kubota Y, Mitamura K, Taga A. Effect of dark-colored maple syrup on cell proliferation of human gastrointestinal cancer cell. Biomed Rep 2017;7:6–10. https://doi.org/10.3892/br.2017.910.

[15] Saraiva A, Carrascosa C, Ramos F, Raheem D, Lopes M, Raposo A. Coconut Sugar: Chemical Analysis and Nutritional Profile; Health Impacts; Safety and Quality Control; Food Industry Applications. Int J Environ Res Public Health 2023;20:3671. https://doi.org/10.3390/ijerph20043671.

[16] Muñiz-Márquez DB, Contreras JC, Rodríguez R, Mussatto SI, Wong-Paz JE, Teixeira JA, et al. Influence of thermal effect on sugars composition of Mexican Agave syrup. CyTA - J Food 2015:1–6. https://doi.org/10.1080/19476337.2015.1028452.

[17] Velázquez Ríos IO, González‐García G, Mellado‐Mojica E, Veloz García RA, Dzul Cauich JG, López MG, et al. Phytochemical profiles and classification of Agave syrups using 1H‐NMR and chemometrics. Food Sci Nutr 2019;7:3–13. https://doi.org/10.1002/fsn3.755.

[18] Khoo HE, Chen BJ, Li J, Li X, Cheng SH, Azlan A. Emerging natural and high-phenolic sweet substances: A review. Int Food Res J 2023;30:303–23. https://doi.org/10.47836/ifrj.30.2.03.

[19] Nagai N, Yamamoto T, Tanabe W, Ito Y, Kurabuchi S, Mitamura K, et al. Changes in Plasma Glucose in Otsuka Long-Evans Tokushima Fatty Rats After Oral Administration of Maple Syrup. J Oleo Sci 2015;64:331–5. https://doi.org/10.5650/jos.ess14075.

[20] Siebenhaller S, Gentes J, Infantes A, Muhle-Goll C, Kirschhöfer F, Brenner-Weiß G, et al. Lipase-Catalyzed Synthesis of Sugar Esters in Honey and Agave Syrup. Front Chem 2018;6. https://doi.org/10.3389/fchem.2018.00024.

[21] Ramadan MF, Gad HA, Farag MA. Chemistry, processing, and functionality of maple food products: An updated comprehensive review. J Food Biochem 2021;45. https://doi.org/10.1111/jfbc.13832.

[22] Unno T. Antioxidant Activity of Different Grades of Maple Syrup as Determined by the Hydrophilic Oxygen Radical Absorbance Capacity Method. Food Sci Technol Res 2015;21:495–8. https://doi.org/10.3136/fstr.21.495.

[23] Hernández-Riveros E, Olvera-Rosales LB, Jaimez-Ordaz J, Pérez-Escalante E, Contreras-López E, Cruz-Guerrero AE, et al. Production of an Ice Cream Base with Added Lacticaseibacillus rhamnosus GG and Aguamiel Syrup: Probiotic Viability and Antihypertensive Capacity. Dairy 2024;5:451–63. https://doi.org/10.3390/dairy5030035.

[24] Jaśkiewicz K, Szczęsna T, Jachuła J. How Phenolic Compounds Profile and Antioxidant Activity Depend on Botanical Origin of Honey—A Case of Polish Varietal Honeys. Molecules 2025;30:360. https://doi.org/10.3390/molecules30020360.

[25] Peters J, Huish R, Taylor D, Munson B. Comparative Analysis of Four Maple Species for Syrup Production in South-Central Appalachia. J Agric Food Syst Community Dev 2020:1–10. https://doi.org/10.5304/jafscd.2020.092.015.

[26] Dantas JMDM, Álvares Monge Neto A, Ghislain T, Lavoie J-M. Bioethanol Production as an Alternative End for Maple Syrups with Flavor Defects. Fermentation 2022;8:58. https://doi.org/10.3390/fermentation8020058.

[27] Puopolo T, Li H, Ma H, Schrader JM, Liu C, Seeram NP. Uncovering the anti-inflammatory mechanisms of phenolic-enriched maple syrup extract in lipopolysaccharide-induced peritonitis in mice: insights from data-independent acquisition proteomics analysis. Food Funct 2023;14:6690–706. https://doi.org/10.1039/d3fo01386c.

[28] Sun J, Ma H, Seeram NP, Rowley DC. Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup. J Agric Food Chem 2016;64:7142–7. https://doi.org/10.1021/acs.jafc.6b03139.

[29] Guenaoui N, Mouhoubi-Tafinine Z, Amessis-Ouchemoukh N, Saimi M, Saidi H, Ayad R, et al. Pollen profiles, physico-chemical parameters, in vitro antioxidant and anti-inflammatory activities of honeys and anti-browning effect of honeys on apple. Mediterr J Nutr Metab 2024;17:15–33. https://doi.org/10.3233/mnm-230037.

[30] Tarapatskyy M, Sowa P, Zaguła G, Dżugan M, Puchalski C. Assessment of the Botanical Origin of Polish Honeys Based on Physicochemical Properties and Bioactive Components with Chemometric Analysis. Molecules 2021;26:4801. https://doi.org/10.3390/molecules26164801.

[31] Dereje N, Bekele G, Nigatu Y, Worku Y, Holland RP. Glycemic Index and Load of Selected Ethiopian Foods: An Experimental Study. J Diabetes Res 2019;2019:1–5. https://doi.org/10.1155/2019/8564879.

[32] Peppa M, Manta A, Mavroeidi I, Nastos C, Pikoulis E, Syrigos K, et al. Dietary Approach of Patients with Hormone-Related Cancer Based on the Glycemic Index and Glycemic Load Estimates. Nutrients 2023;15:3810. https://doi.org/10.3390/nu15173810.

[33] Sawitzki F, Silva MAMD. Glycemic response of coconut sugar, sucrose and brown sugar in healthy subjects. UNITING Knowl. Integr. Sci. Res. Glob. Dev. 1st ed., Seven Editora; 2023. https://doi.org/10.56238/uniknowindevolp-014.

[34] Yu D, Zhang X, Shu X-O, Cai H, Li H, Ding D, et al. Dietary glycemic index, glycemic load, and refined carbohydrates are associated with risk of stroke: a prospective cohort study in urban Chinese women. Am J Clin Nutr 2016;104:1345–51. https://doi.org/10.3945/ajcn.115.129379.

[35] Silva KC, Nobre LN, De Castro Ferreira Vicente SE, Moreira LL, Do Carmo Lessa A, Lamounier JA. Influence of glycemic index and glycemic load of the diet on the risk of overweight and adiposity in childhood. Rev Paul Pediatr Engl Ed 2016;34:293–300. https://doi.org/10.1016/j.rppede.2015.12.009.

[36] Wang ML, Gellar L, Nathanson BH, Pbert L, Ma Y, Ockene I, et al. Decrease in Glycemic Index Associated with Improved Glycemic Control among Latinos with Type 2 Diabetes. J Acad Nutr Diet 2015;115:898–906. https://doi.org/10.1016/j.jand.2014.10.012.

[37] González-Garibay AS, Sandoval G, Torres-González OR, Bastidas-Ramírez BE, Sánchez-Hernández IM, Padilla-Camberos E. Agave-Laurate-Bioconjugated Fructans Decrease Hyperinsulinemia and Insulin Resistance, Whilst Increasing IL-10 in Rats with Metabolic Syndrome Induced by a High-Fat Diet. Pharmaceuticals 2024;17:1036. https://doi.org/10.3390/ph17081036.

[38] Padilla-Camberos E, Arrizon J, Sandoval G. Effect of Agave Fructan Bioconjugates on Metabolic Syndrome Parameters in a Murine Model. Pharmaceuticals 2023;16:412. https://doi.org/10.3390/ph16030412.

[39] Chege BM, Nyaga NM, Kaur PS, Misigo WO, Khan N, Wanyonyi WC, et al. The significant antidyslipidemic, hypoglycemic, antihyperglycemic, and antiobesity activities of the aqueous extracts of Agave Sisalana juice are partly mediated via modulation of calcium signaling pathways. Heliyon 2023;9:e12400. https://doi.org/10.1016/j.heliyon.2022.e12400.

[40] Igbinoba SI, Akanmu MA, Onyeji CO, Soyinka JO, Owolabi AR, Nathaniel TI, et al. Influence of a Nigerian honey on CYP3A4 biotransformation of quinine in healthy volunteers. J Clin Pharm Ther 2015;40:545–9. https://doi.org/10.1111/jcpt.12303.

[41] Shikoo EY, Bakeel BFH. Effect of Honey on Blood Sugar Level and Lipids Metabolism in Male Rabbits. Electron J Univ Aden Basic Appl Sci 2021;2:87–92. https://doi.org/10.47372/ejua-ba.2021.2.94.

[42] Tura A, Chemello G, Szendroedi J, Göbl C, Færch K, Vrbíková J, et al. Prediction of clamp-derived insulin sensitivity from the oral glucose insulin sensitivity index. Diabetologia 2018;61:1135–41. https://doi.org/10.1007/s00125-018-4568-4.

[43] García Contreras A, Vásquez Garibay E, Sánchez Ramírez C, Fafutis Morris M, Delgado Rizo V. Lactobacillus reuteri DSM 17938 and Agave Inulin in Children with Cerebral Palsy and Chronic Constipation: A Double-Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020;12:2971. https://doi.org/10.3390/nu12102971.

[44] García-Curbelo Y, Bocourt R, Savón LL, García-Vieyra MI, López MG. Prebiotic effect of Agave fourcroydes fructans: an animal model. Food Funct 2015;6:3177–82. https://doi.org/10.1039/c5fo00653h.

[45] González-Herrera SM, Simental-Mendía LE, López MG, Rocha-Guzmán NE, Rutiaga-Quiñones OM, Rodríguez-Herrera R, et al. Effect of agave fructans on the production of short chain fatty acid in mice. Food Sci Biotechnol 2019;28:1493–8. https://doi.org/10.1007/s10068-019-00572-1.

[46] Torres-Maravilla E, Méndez-Trujillo V, Hernández-Delgado NC, Bermúdez-Humarán LG, Reyes-Pavón D. Looking inside Mexican Traditional Food as Sources of Synbiotics for Developing Novel Functional Products. Fermentation 2022;8:123. https://doi.org/10.3390/fermentation8030123.

[47] Ávila Lara DD, Rubio-Ríos A, Rosales-Marines L, Solanilla-Duque JF, Flores-Gallegos AC, Rodríguez-Herrera R. Optimization of parameters of a single effect evaporator for agave syrup production. DYNA 2021;88:118–22. https://doi.org/10.15446/dyna.v88n219.97085.

[48] Rascón L, Cruz M, Rodríguez-Jasso RM, Neira-Vielma AA, Ramírez-Barrón SN, Belmares R. Effect of Ohmic Heating on Sensory, Physicochemical, and Microbiological Properties of “Aguamiel” of Agave salmiana. Foods 2020;9:1834. https://doi.org/10.3390/foods9121834.

[49] Berg AKVD, Perkins TD, Isselhardt ML. Composition and Properties of Maple Sap, Concentrate, and Permeate. Agric Sci 2019;10:32–45. https://doi.org/10.4236/as.2019.101004.

[50] Bhatta S, Ratti C, Stevanovic T. Impact of drying processes on properties of polyphenol‐enriched maple sugar powders. J Food Process Eng 2019;42. https://doi.org/10.1111/jfpe.13239.

[51] Toufeili I, Itani M, MonaZeidan M, Yamani OA, Kharroubi S. Nutritional and Functional Potential of Carob Syrup Versus Date and Maple Syrup. Food Technol Biotechnol 2022;60:266–78. https://doi.org/10.17113/ftb.60.02.22.7419.

[52] Ozuna C, Trueba-Vázquez E, Moraga G, Llorca E, Hernando I. Agave Syrup as an Alternative to Sucrose in Muffins: Impacts on Rheological, Microstructural, Physical, and Sensorial Properties. Foods 2020;9:895. https://doi.org/10.3390/foods9070895.

[53] Rodríguez-Rodríguez R, Barajas-Álvarez P, Morales-Hernández N, Camacho-Ruíz RM, Espinosa-Andrews H. Physical Properties and Prebiotic Activities (Lactobacillus spp.) of Gelatine-Based Gels Formulated with Agave Fructans and Agave Syrups as Sucrose and Glucose Substitutes. Molecules 2022;27:4902. https://doi.org/10.3390/molecules27154902.

[54] Yargatti R, Muley A. Agave syrup as a replacement for sucrose: An exploratory review. Funct Foods Health Dis 2022;12:590. https://doi.org/10.31989/ffhd.v12i10.1003.

[55] Cázares-Vásquez ML, Rodríguez-Herrera R, Aguilar-González CN, Sáenz-Galindo A, Solanilla-Duque JF, Contreras-Esquivel JC, et al. Microbial Exopolysaccharides in Traditional Mexican Fermented Beverages. Fermentation 2021;7:249. https://doi.org/10.3390/fermentation7040249.

[56] Letaief T, Mejri J, Ressureição S, Abderrabba M, Costa R. Extraction of Ziziphus lotus fruit syrups: effect of enzymatic extraction and temperature on the rheological and chemical properties. Int Agrophysics 2021;35:31–40. https://doi.org/10.31545/intagr/131801.

[57] Kivima E, Tanilas K, Martverk K, Rosenvald S, Timberg L, Laos K. The Composition, Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Estonian Honeys. Foods 2021;10:511. https://doi.org/10.3390/foods10030511.

[58] Piana ML, Cianciabella M, Daniele GM, Badiani A, Rocculi P, Tappi S, et al. Influence of the Physical State of Two Monofloral Honeys on Sensory Properties and Consumer Satisfaction. Foods 2023;12:986. https://doi.org/10.3390/foods12050986.

[59] Erdoğan SL, Çetintaş Y, Barut YT, Süfer Ö, Koç GÇ, Yüksel AN. Exploring Granola Production Through Oven And Microwave Baking With Different Sweeteners In Trendy Breakfast Cereal 2024. https://doi.org/10.21203/rs.3.rs-3890897/v1.

[60] Marcazzan GL, Mucignat-Caretta C, Marina Marchese C, Piana ML. A review of methods for honey sensory analysis. J Apic Res 2018;57:75–87. https://doi.org/10.1080/00218839.2017.1357940.

[61] Medici S, Sarlo E, Sánchez Pascua G, Garcia De La Rosa S, Casales MR, Fuselli S. Characterization of Argentine honeys based on odour, colour and flavour attributes by descriprive sensory analysis. Columella J Agric Environ Sci 2023;10:37–48. https://doi.org/10.18380/szie.colum.2023.10.2.37.

[62] Šedík P, Pocol CB, Ivanišová E. Interdisciplinary Approach Towards Consumer Acceptability of Flavoured Honey: Case of Young Generation in Slovakia. Bull Univ Agric Sci Vet Med Cluj-Napoca Food Sci Technol 2020;77:57–66. https://doi.org/10.15835/buasvmcn-fst:2020.0039.

[63] Aldrete-Herrera PI, López MG, Medina-Torres L, Ragazzo-Sánchez JA, Calderón-Santoyo M, González-Ávila M, et al. Physicochemical Composition and Apparent Degree of Polymerization of Fructans in Five Wild Agave Varieties: Potential Industrial Use. Foods 2019;8:404. https://doi.org/10.3390/foods8090404.

[64] García-Gamboa R, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Gradilla-Hernández MS, Ortiz-Basurto RI, García-Reyes RA, González-Avila M. Assessment of intermediate and long chains agave fructan fermentation on the growth of intestinal bacteria cultured in a gastrointestinal tract simulator. Rev Mex Ing Quím 2019;19:827–38. https://doi.org/10.24275/rmiq/bio842.

[65] Plascencia A, Gutiérrez-Mora A, Rodríguez-Domínguez JM, Castañeda-Nava JJ, Gallardo-Valdez J, Shimada H, et al. Molecular weight distribution of fructans extracted from Agave salmiana leaves. Bot Sci 2022;100:657–66. https://doi.org/10.17129/botsci.2960.

[66] Dolores VÁ, Valle-de La Paz M, Reyes Ríos R, Perales Rosas D. Agave cupreata fructans, encapsulation as pro and prebiotics. J Appl Biotechnol Bioeng 2023;10:159–62. https://doi.org/10.15406/jabb.2023.10.00343.

[67] López-Velázquez G, Parra-Ortiz M, Mora I, García-Torres I, Enríquez-Flores S, Alcántara-Ortigoza M, et al. Effects of Fructans from Mexican Agave in Newborns Fed with Infant Formula: A Randomized Controlled Trial. Nutrients 2015;7:8939–51. https://doi.org/10.3390/nu7115442.

[68] Martha‐Lucero N, Cruz‐Guerrero A, Favela‐Torres E, Viniegra‐González G, Cira‐Chávez LA, Estrada‐Alvarado MI. Lactic acid production by direct fermentation of agave fructans. J Chem Technol Biotechnol 2025;100:935–41. https://doi.org/10.1002/jctb.7828.

[69] Labonté M-È, Poon T, Gladanac B, Ahmed M, Franco-Arellano B, Rayner M, et al. Nutrient Profile Models with Applications in Government-Led Nutrition Policies Aimed at Health Promotion and Noncommunicable Disease Prevention: A Systematic Review. Adv Nutr 2018;9:741–88. https://doi.org/10.1093/advances/nmy045.

[70] Davis SC, Kuzmick ER, Niechayev N, Hunsaker DJ. Productivity and water use efficiency ofAgave americanain the first field trial as bioenergy feedstock on arid lands. GCB Bioenergy 2017;9:314–25. https://doi.org/10.1111/gcbb.12324.

[71] Owen NA, Fahy KF, Griffiths H. Crassulacean acid metabolism (CAM) offers sustainable bioenergy production and resilience to climate change. GCB Bioenergy 2016;8:737–49. https://doi.org/10.1111/gcbb.12272.

[72] Ortiz-Cano H, Hernandez-Herrera JA, Hansen NC, Petersen SL, Searcy MT, Mata-Gonzalez R, et al. Pre-Columbian Rock Mulching as a Strategy for Modern Agave Cultivation in Arid Marginal Lands. Front Agron 2020;2. https://doi.org/10.3389/fagro.2020.00010.

[73] Valdivieso Solís DG, Vargas Escamilla CA, Mondragón Contreras N, Galván Valle GA, Gilés-Gómez M, Bolívar F, et al. Sustainable Production of Pulque and Maguey in Mexico: Current Situation and Perspectives. Front Sustain Food Syst 2021;5. https://doi.org/10.3389/fsufs.2021.678168.

[74] Parascanu MM, Sanchez N, Sandoval-Salas F, Carreto CM, Soreanu G, Sanchez-Silva L. Environmental and economic analysis of bioethanol production from sugarcane molasses and agave juice. Environ Sci Pollut Res 2021;28:64374–93. https://doi.org/10.1007/s11356-021-15471-4.

[75] Escalante A, López Soto DR, Velázquez Gutiérrez JE, Giles-Gómez M, Bolívar F, López-Munguía A. Pulque, a Traditional Mexican Alcoholic Fermented Beverage: Historical, Microbiological, and Technical Aspects. Front Microbiol 2016;7. https://doi.org/10.3389/fmicb.2016.01026.

[76] Tetreault D, McCulligh C, Lucio C. Distilling agro‐extractivism: Agave and tequila production in Mexico. J Agrar Change 2021;21:219–41. https://doi.org/10.1111/joac.12402.

[77] Herrera-Pérez L, Valtierra-Pacheco E, Ocampo-Fletes I, Tornero-Campante MA, Hernández-Plascencia JA, Rodríguez-Macías R. Evaluation of the sustainability of two types of Agave tequilana Weber var. Blue agroecosystems in Tequila, Jalisco. Agrociencia 2023. https://doi.org/10.47163/agrociencia.v57i8.2638.

[78] Martínez JM, Baltierra-Trejo E, Taboada-González P, Aguilar-Virgen Q, Marquez-Benavides L. Life Cycle Environmental Impacts and Energy Demand of Craft Mezcal in Mexico. Sustainability 2020;12:8242. https://doi.org/10.3390/su12198242.

[79] Battling S, Engel T, Herweg E, Niehoff P-J, Pesch M, Scholand T, et al. Highly efficient fermentation of 5-keto-d-fructose with Gluconobacter oxydans at different scales. Microb Cell Factories 2022;21. https://doi.org/10.1186/s12934-022-01980-5.

[80] Kim E. Effects of Natural Alternative Sweeteners on Metabolic Diseases. Clin Nutr Res 2023;12:229. https://doi.org/10.7762/cnr.2023.12.3.229.

[81] Souza PBA, Santos MDF, Carneiro JDDS, Pinto VRA, Carvalho EEN. The effect of different sugar substitute sweeteners on sensory aspects of sweet fruit preserves: A systematic review. J Food Process Preserv 2022;46. https://doi.org/10.1111/jfpp.16291.

[82] Sparacino A, Merlino VM, Blanc S, Borra D, Massaglia S. A Choice Experiment Model for Honey Attributes: Italian Consumer Preferences and Socio-Demographic Profiles. Nutrients 2022;14:4797. https://doi.org/10.3390/nu14224797.

[83] Zhu K, Aykas DP, Rodriguez-Saona LE. Pattern Recognition Approach for the Screening of Potential Adulteration of Traditional and Bourbon Barrel-Aged Maple Syrups by Spectral Fingerprinting and Classical Methods. Foods 2022;11:2211. https://doi.org/10.3390/foods11152211.

[84] Ahmad NN, Khairatun SiN, Ungku Zainal Abidin UF. Factors influencing Intention to Purchase Fraudulent Honey among Malaysian Consumers. Int J Acad Res Bus Soc Sci 2021;11. https://doi.org/10.6007/ijarbss/v11-i4/9040.

[85] Oh H-J, Lee D, Lee H-J, Kim S-R. Investigation of the Incorporation and Authenticity of C4 Sugars in Natural Sugar Products Distributed in Jeju Using Carbon Isotope Ratio. J Korean Soc Food Sci Nutr 2024;53:762–9. https://doi.org/10.3746/jkfn.2024.53.7.762.

Descargas

Publicado

2026-01-05

Cómo citar

Guevara-García, D., Pérez-Flores, J. G., García-Curiel, L., Contreras-López, E., Jaimez-Ordaz, J., & Cruz-Guerrero, A. E. (2026). Aguamiel como edulcorante natural: revisión narrativa de sus propiedades nutricionales, glicémicas y tecnológicas frente a otros endulzantes. XIKUA Boletín Científico De La Escuela Superior De Tlahuelilpan, 14(27), 66–80. https://doi.org/10.29057/xikua.v14i27.15572