Dental Stem Cells: classification and applications
Abstract
In the last decades, the term stem cells has been one of the main topics to be discussed due to its scientific and medical importance, since its implementation in the field of medicine offers us very promising alternatives in the treatment and above all solution of diseases such as diabetes, Alzheimer, Parkinson's disease, cancer, in treatments of traumatology and orthopedics, transplants, oral surgery, as well as the reconstruction of organs and tissues including those of dental origin, among others. Stem cells are undifferentiated cells characterized by their great capacity for self-renewal, clonality and differentiation; they are present in the embryonic and adult stages of life in human beings. At present, a large number of sources of mesenchymal stromal cells (MSC) in the oral cavity are classified into eight main populations, which are very easy to obtain for the dental team, including: dental pulp, exfoliated primary teeth, dental follicle, dental germ, apical papilla, periodontal ligament, gingiva and periosteum. The objective of the following review is to show the panorama of the research from its origin, generalities, classification and application of this group of cells, since in spite of the advances in stem cell biology, some ethical controversies, as well as tumor formation and rejection limit their usefulness. That is why in this review we carefully describe the potential of dental stem cells to differentiate into osteoblasts, osteocytes, odontoblasts, chondrocytes, adipocytes and neural cells.
Downloads
References
Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol. 2015;62(3):329-337.
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rrybak z. Stem Cells: Past, present, and future. Stem Cell Res Ther.2019;10(1):1–22.
Kolios G, Moodley Y. Introduction to Stem Cells and Regenerative Medicine. Respiration2013;85(1):3–10.
Mens MMJ, Ghanbari M. Cell Cycle Regulation of Stem Cells by MicroRNAs. Stem Cell Rev. Rep.2018;14(3):309-322.
Cortés Gaitán AJ, Cortés Velosa T, Duque Rodríguez AE, Andrés Rodríguez Sáenz Á, Carlos J, Niño M. Células troncales mesenquimales de la papila apical y su papel prometedor en la biología radicular. Rev. Mex. de Estomato.2017;3(2):61–74.
Shyh-Chang N, Ng HH. The metabolic programming of stem cells. Genes Dev.2017;31(4):336–346.
Laplane L, Solary E. Towards a classification of stem cells. Elife.2019;8:1-5.
Ghazimoradi MH, Khalafizadeh A, Babashah S. A critical review on induced totipotent stem cells: Types and methods. Stem Cell Res. 2022; 63:102857.
Har A, Park JC. Dental Stem Cells and Their Applications. Chin. J. Dent. Res.2015;18(4):207–212.
Pimentel-Parra GA, Murcia-Ordoñez B. Células madre, una nueva alternativa médica. Perinatol Reprod. Hum. 2017;31(1):28–33.
Baker CL, Pera MF. Capturing Totipotent Stem Cells. Cell Stem Cell.2018;22(1):25–34.
Ghazimoradi MH, Khalafizadeh A, Babashah S. A critical review on induced totipotent stem cells: Types and methods. Stem Cell Res.2022;63:1-6.
Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells. Phil. Trans. R. Soc. B.2015;370(1680).
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell. Rev. Rep. 2020;16(1):3-32.
Sobhani A, Khanlarkhani N, Baazm M, Mohammadzadeh F, Najafi A, Mehdinejadiani S, et al. Multipotent Stem Cell and Current Application. Acta Med. Iran.2017;55(1):6–23.
Huang GTJ, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J. Dent. Res.2009;88(9):792–806.
REFERENCES
Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol. 2015;62(3):329-337.
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rrybak z. Stem Cells: Past, present, and future. Stem Cell Res Ther.2019;10(1):1–22.
Kolios G, Moodley Y. Introduction to Stem Cells and Regenerative Medicine. Respiration2013;85(1):3–10.
Mens MMJ, Ghanbari M. Cell Cycle Regulation of Stem Cells by MicroRNAs. Stem Cell Rev. Rep.2018;14(3):309-322.
Cortés Gaitán AJ, Cortés Velosa T, Duque Rodríguez AE, Andrés Rodríguez Sáenz Á, Carlos J, Niño M. Células troncales mesenquimales de la papila apical y su papel prometedor en la biología radicular. Rev. Mex. de Estomato.2017;3(2):61–74.
Shyh-Chang N, Ng HH. The metabolic programming of stem cells. Genes Dev.2017;31(4):336–346.
Laplane L, Solary E. Towards a classification of stem cells. Elife.2019;8:1-5.
Ghazimoradi MH, Khalafizadeh A, Babashah S. A critical review on induced totipotent stem cells: Types and methods. Stem Cell Res. 2022; 63:102857.
Har A, Park JC. Dental Stem Cells and Their Applications. Chin. J. Dent. Res.2015;18(4):207–212.
Pimentel-Parra GA, Murcia-Ordoñez B. Células madre, una nueva alternativa médica. Perinatol Reprod. Hum. 2017;31(1):28–33.
Baker CL, Pera MF. Capturing Totipotent Stem Cells. Cell Stem Cell.2018;22(1):25–34.
Ghazimoradi MH, Khalafizadeh A, Babashah S. A critical review on induced totipotent stem cells: Types and methods. Stem Cell Res.2022;63:1-6.
Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells. Phil. Trans. R. Soc. B.2015;370(1680).
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell. Rev. Rep. 2020;16(1):3-32.
Sobhani A, Khanlarkhani N, Baazm M, Mohammadzadeh F, Najafi A, Mehdinejadiani S, et al. Multipotent Stem Cell and Current Application. Acta Med. Iran.2017;55(1):6–23.
Huang GTJ, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J. Dent. Res.2009;88(9):792–806.
Estrela C, de Alencar AHG, Kitten GT, Vencio EF, Gava E. Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz. Dent. J. 2011;22(2):91–8.
Gioventù S, Andriolo G, Bonino F, Frasca S, Lazzari L, Montelatici E, et al. A novel method for banking dental pulp stem cells. Transfus Apher Sci. 2012;47(2): 199-206.
Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl. Med. 2020;9(4):445–464.
Tsutsui TW. Dental Pulp Stem Cells: Advances to Applications. Stem Cells Cloning 2020;13:33-42.
Liu P, Zhang Y, Ma Y, Tan S, Ren B, Liu S, et al. Application of dental pulp stem cells in oral maxillofacial tissue engineering. Int. J. Med. Sci. 2022;19(2):310–320.
Bar JK, Lis-Nawara A, Grelewski PG. Dental Pulp Stem Cell-Derived Secretome and Its Regenerative Potential. Int. J. Mol. Sci. 2021;22(21):12-18.
Xiao L, Nasu M. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells. Stem Cells Cloning 2014;7:89-99.
Armiñán A, Gandía C, Bartual M, García-Verdugo JM, Lledó E, Mirabet V, et al. Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells and Dev. 2009;18(6):907–918.
Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. U S A. 2003;100(10):5807–5812.
Yang X, Ma Y, Guo W, Yang B, Tian W. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics. 2019;9(9):2694–2711.
Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl. Med. 2020;9(4):445-464.
Nada OA, el Backly RM. Stem Cells From the Apical Papilla (SCAP) as a Tool for Endogenous Tissue Regeneration. Front Bioeng. Biotechnol. 2018;6:103.
Kang J, Fan W, Deng Q, He H, Huang F. Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy. Biomed. Res. Int. 2019;6104738.
Mai Z, Chen H, Ye Y, Hu Z, Sun W, Cui L, et al. Translational and Clinical Applications of Dental Stem Cell-Derived Exosomes. Front. Genet. 2021;12:2087.
Ikeda E, Hirose M, Kotobuki N, Shimaoka H, Tadokoro M, Maeda M, et al. Osteogenic differentiation of human dental papilla mesenchymal cells. Biochem. Biophys. Res. Commun. 2006;342(4):1257–1262.
Yang C, Li X, Sun L, Guo W, Tian W. Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J. Neural Eng. 2017;14(2):026005.
Hilkens P, Fanton Y, Martens W, Gervois P, Struys T, Politis C, et al. Pro-angiogenic impact of dental stem cells in vitro and in vivo. Stem Cell Res. 2014;12(3):778–790.
Gamboa KB, Gamboa KB, Calderón JB, Menéndez JG, Carballo NC. Uso de Células Madres en el Complejo Orofacial. Archiv. Méd. Camagüey. 2012;16(5):1637–1646.
Bi R, Lyu P, Song Y, Li P, Song D, Cui C, et al. Function of Dental Follicle Progenitor/Stem Cells and Their Potential in Regenerative Medicine: From Mechanisms to Applications. Biomolecules. 2021;11(7):997.
Cao C, Tarlé S, Kaigler D. Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells. Stem Cell Res. Ther. 2020;11(1):1–13.
Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J. Tissue Eng. 2017;8:2041.
Oshima M, Ogawa M, Sonoyama W, Satoshi Hara E, Oida Y, Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model. Sci. Rep. 2017; 7:44522.
Taşlı PN, Doğan A, Demirci S, Şahin F. Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology. 2016;68(2):319–329.
Kim D, Lee AE, Xu Q, Zhang Q, Le AD. Gingiva-Derived Mesenchymal Stem Cells: Potential Application in Tissue Engineering and Regenerative Medicine. A Comprehensive Rev. Front Immunol. 2021;12:667221.
Copyright (c) 2023 Marisol Alvarez Sanchez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.