Exploring In Vitro Models: Advances and Challenges in Human Respiratory Tract Research

Keywords: organoids, ex vivo models, ALI, hIPSC, human airways

Abstract

In recent years, there has been a concerted effort to develop in vivo and ex vivo models that replicate the histology, physiology, and pathology of human airways, but their translation to human applications has posed significant challenges. Ethical concerns regarding the number of animals required for efficacy and safety assessments remain a critical issue. As an alternative, in vitro models have gained prominence, aiming to emulate human tissue characteristics. They offer promising correlations with human tissue, providing a more ethical, cost-effective, and rapid approach for reproducible results. In vitro models present an opportunity to reduce reliance on animal testing while offering a controlled environment that better elucidates cell-cell interactions compared to ex vivo models. However, challenges persist. The lack of standardized methodologies, protocols, and validated approaches hinders the reliability and widespread adoption of these in vitro models. Addressing these hurdles is essential to ensure the accuracy and credibility of results derived from these systems.

 

Downloads

Download data is not yet available.

References

Jiang XQ, Mei XD, Feng D. Air pollution and chronic airway diseases: what should people know and do? J Thorac Dis. 2016;8(1):E31-40.

Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581-92.

Clippinger AJ, Ahluwalia A, Allen D, Bonner JC, Casey W, Castranova V, et al. Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials. Arch Toxicol. 2016;90(7):1769-83.

Emami J. In vitro - in vivo correlation: from theory to applications. J Pharm Pharm Sci. 2006;9(2):169-89.

Wadell C, Bjork E, Camber O. Permeability of porcine nasal mucosa correlated with human nasal absorption. Eur J Pharm Sci. 2003;18(1):47-53.

Davis JD, Wypych TP. Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol. 2021;14(5):978-90.

Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 2018;560(7718):319-24.

Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(31):12771-5.

Hajj R, Lesimple P, Nawrocki-Raby B, Birembaut P, Puchelle E, Coraux C. Human airway surface epithelial regeneration is delayed and abnormal in cystic fibrosis. J Pathol. 2007;211(3):340-50.

Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME. Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc. 2008;5(7):772-7.

Rock JR, Randell SH, Hogan BL. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 2010;3(9-10):545-56.

Hsia CC, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol. 2013;3(2):849-915.

Ahookhosh K, Pourmehran O, Aminfar H, Mohammadpourfard M, Sarafraz MM, Hamishehkar H. Development of human respiratory airway models: A review. Eur J Pharm Sci. 2020;145:105233.

Schittny JC, Mund SI, Stampanoni M. Evidence and structural mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol. 2008;294(2):L246-54.

Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18(1):8-23.

Frank DB, Penkala IJ, Zepp JA, Sivakumar A, Linares-Saldana R, Zacharias WJ, et al. Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(10):4362-71.

Cardoso WV, Lu J. Regulation of early lung morphogenesis: questions, facts and controversies. Development. 2006;133(9):1611-24.

Herriges M, Morrisey EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014;141(3):502-13.

Hashimoto S, Nakano H, Singh G, Katyal S. Expression of Spred and Sprouty in developing rat lung. Mech Dev. 2002;119 Suppl 1:S303-9.

Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, et al. Lung organogenesis. Curr Top Dev Biol. 2010;90:73-158.

Zepp JA, Morrisey EE. Cellular crosstalk in the development and regeneration of the respiratory system. Nature reviews Molecular cell biology. 2019;20(9):551-66.

Hines EA, Sun X. Tissue crosstalk in lung development. J Cell Biochem. 2014;115(9):1469-77.

Schittny JC. Development of the lung. Cell and tissue research. 2017;367(3):427-44.

Labaki WW, Han MK. Chronic respiratory diseases: a global view. Lancet Respir Med. 2020;8(6):531-3.

Barnes PJ, Bonini S, Seeger W, Belvisi MG, Ward B, Holmes A. Barriers to new drug development in respiratory disease. Eur Respir J. 2015;45(5):1197-207.

Lehr CM, Yeo L, Sznitman J. Editorial: Innovative In Vitro Models for Pulmonary Physiology and Drug Delivery in Health and Disease. Front Bioeng Biotechnol. 2021;9:788682.

Metersky M, Waterer G. Can animal models really teach us anything about pneumonia? Con. Eur Respir J. 2020;55(1).

Mou H, Wang J, Hu H, Xu W, Chen Q. [Non-small cell lung cancer 95D cells co-cultured with 3D-bioprinted scaffold to construct a lung cancer model in vitro]. Zhonghua Zhong Liu Za Zhi. 2015;37(10):736-40.

Wadman M. FDA no longer has to require animal testing for new drugs. Science. 2023;379(6628):127-8.

Barrila J, Crabbe A, Yang J, Franco K, Nydam SD, Forsyth RJ, et al. Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect Immun. 2018;86(11).

Barrila J, Radtke AL, Crabbe A, Sarker SF, Herbst-Kralovetz MM, Ott CM, et al. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat Rev Microbiol. 2010;8(11):791-801.

Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14(4):910-9.

Dvorak A, Tilley AE, Shaykhiev R, Wang R, Crystal RG. Do airway epithelium air-liquid cultures represent the in vivo airway epithelium transcriptome? Am J Respir Cell Mol Biol. 2011;44(4):465-73.

Heijink IH, Kuchibhotla VNS, Roffel MP, Maes T, Knight DA, Sayers I, et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy. 2020;75(8):1902-17.

McDougall CM, Blaylock MG, Douglas JG, Brooker RJ, Helms PJ, Walsh GM. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies. Am J Respir Cell Mol Biol. 2008;39(5):560-8.

Moreau-Marquis S, Redelman CV, Stanton BA, Anderson GG. Co-culture models of Pseudomonas aeruginosa biofilms grown on live human airway cells. J Vis Exp. 2010(44).

Eenjes E, van Riet S, Kroon AA, Slats AM, Khedoe P, Boerema-de Munck A, et al. Disease modeling following organoid-based expansion of airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2021;321(4):L775-L86.

Hiemstra PS, Bals R. Effects of E-Cigarette Use on Human Lung Tissue. On Harm Reduction and Causing Harm. Am J Respir Crit Care Med. 2018;198(1):6-7.

Bartfeld S, Clevers H. Organoids as Model for Infectious Diseases: Culture of Human and Murine Stomach Organoids and Microinjection of Helicobacter Pylori. J Vis Exp. 2015(105).

Hiemstra PS, Tetley TD, Janes SM. Airway and alveolar epithelial cells in culture. Eur Respir J. 2019;54(5).

Chiu MC, Zhang S, Li C, Liu X, Yu Y, Huang J, et al. Apical-Out Human Airway Organoids Modeling SARS-CoV-2 Infection. Viruses. 2023;15(5).

Stroulios G, Brown T, Moreni G, Kondro D, Dei A, Eaves A, et al. Apical-out airway organoids as a platform for studying viral infections and screening for antiviral drugs. Scientific reports. 2022;12(1):7673.

Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662-8.

Huh DD. A human breathing lung-on-a-chip. Ann Am Thorac Soc. 2015;12 Suppl 1(Suppl 1):S42-4.

Hassell BA, Goyal G, Lee E, Sontheimer-Phelps A, Levy O, Chen CS, et al. Human Organ Chip Models Recapitulate Orthotopic Lung Cancer Growth, Therapeutic Responses, and Tumor Dormancy In Vitro. Cell reports. 2017;21(2):508-16.

Artzy-Schnirman A, Hobi N, Schneider-Daum N, Guenat OT, Lehr CM, Sznitman J. Advanced in vitro lung-on-chip platforms for inhalation assays: From prospect to pipeline. Eur J Pharm Biopharm. 2019;144:11-7.

Barrila J, Yang J, Crabbe A, Sarker SF, Liu Y, Ott CM, et al. Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns. NPJ Microgravity. 2017;3:10.

Carterson AJ, Honer zu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR, et al. A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infect Immun. 2005;73(2):1129-40.

Crabbe A, Sarker SF, Van Houdt R, Ott CM, Leys N, Cornelis P, et al. Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cell Microbiol. 2011;13(3):469-81.

Goeteyn E, Grassi L, Van den Bossche S, Rigauts C, Vande Weygaerde Y, Van Braeckel E, et al. Commensal bacteria of the lung microbiota synergistically inhibit inflammation in a three-dimensional epithelial cell model. Frontiers in immunology. 2023;14:1176044.

Rigauts C, Aizawa J, Taylor SL, Rogers GB, Govaerts M, Cos P, et al. R othia mucilaginosa is an anti-inflammatory bacterium in the respiratory tract of patients with chronic lung disease. Eur Respir J. 2022;59(5).

Crabbe A, Liu Y, Matthijs N, Rigole P, De La Fuente-Nunez C, Davis R, et al. Antimicrobial efficacy against Pseudomonas aeruginosa biofilm formation in a three-dimensional lung epithelial model and the influence of fetal bovine serum. Scientific reports. 2017;7:43321.

Van den Driessche F, Vanhoutte B, Brackman G, Crabbe A, Rigole P, Vercruysse J, et al. Evaluation of combination therapy for Burkholderia cenocepacia lung infection in different in vitro and in vivo models. PloS one. 2017;12(3):e0172723.

Crabbe A, Liu Y, Sarker SF, Bonenfant NR, Barrila J, Borg ZD, et al. Recellularization of decellularized lung scaffolds is enhanced by dynamic suspension culture. PloS one. 2015;10(5):e0126846.

Grassi L, Batoni G, Ostyn L, Rigole P, Van den Bossche S, Rinaldi AC, et al. The Antimicrobial Peptide lin-SB056-1 and Its Dendrimeric Derivative Prevent Pseudomonas aeruginosa Biofilm Formation in Physiologically Relevant Models of Chronic Infections. Front Microbiol. 2019;10:198.

Clevers H. Modeling Development and Disease with Organoids. Cell. 2016;165(7):1586-97.

Lou YR, Leung AW. Next generation organoids for biomedical research and applications. Biotechnol Adv. 2018;36(1):132-49.

Nossa R, Costa J, Cacopardo L, Ahluwalia A. Breathing in vitro: Designs and applications of engineered lung models. J Tissue Eng. 2021;12:20417314211008696.

Tortorella I, Argentati C, Emiliani C, Martino S, Morena F. The role of physical cues in the development of stem cell-derived organoids. Eur Biophys J. 2022;51(2):105-17.

Cunniff B, Druso JE, van der Velden JL. Lung organoids: advances in generation and 3D-visualization. Histochem Cell Biol. 2021;155(2):301-8.

Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annual review of cell and developmental biology. 2009;25:221-51.

Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell. 2013;12(5):520-30.

Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, et al. Type 2 alveolar cells are stem cells in adult lung. The Journal of clinical investigation. 2013;123(7):3025-36.

Kotton DN, Rossant J. Modeling pulmonary alveolar proteinosis with induced pluripotent stem cells. Am J Respir Crit Care Med. 2014;189(2):124-6.

Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 2014;15(2):123-38.

Huang SX, Green MD, de Carvalho AT, Mumau M, Chen YW, D'Souza SL, et al. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat Protoc. 2015;10(3):413-25.

Rosen C, Shezen E, Aronovich A, Klionsky YZ, Yaakov Y, Assayag M, et al. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nat Med. 2015;21(8):869-79.

Hawkins FJ, Suzuki S, Beermann ML, Barilla C, Wang R, Villacorta-Martin C, et al. Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2021;28(1):79-95 e8.

Kong J, Wen S, Cao W, Yue P, Xu X, Zhang Y, et al. Lung organoids, useful tools for investigating epithelial repair after lung injury. Stem Cell Res Ther. 2021;12(1):95.

Longmire TA, Ikonomou L, Kotton DN. Mouse ESC Differentiation to Nkx2.1+ Lung and Thyroid Progenitors. Bio Protoc. 2012;2(22).

Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, et al. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell. 2012;10(4):385-97.

Lodes N, Seidensticker K, Perniss A, Nietzer S, Oberwinkler H, May T, et al. Investigation on Ciliary Functionality of Different Airway Epithelial Cell Lines in Three-Dimensional Cell Culture. Tissue Eng Part A. 2020;26(7-8):432-40.

Wiese-Rischke C, Murkar RS, Walles H. Biological Models of the Lower Human Airways-Challenges and Special Requirements of Human 3D Barrier Models for Biomedical Research. Pharmaceutics. 2021;13(12).

Zscheppang K, Berg J, Hedtrich S, Verheyen L, Wagner DE, Suttorp N, et al. Human Pulmonary 3D Models For Translational Research. Biotechnol J. 2018;13(1).

Bovard D, Giralt A, Trivedi K, Neau L, Kanellos P, Iskandar A, et al. Comparison of the basic morphology and function of 3D lung epithelial cultures derived from several donors. Curr Res Toxicol. 2020;1:56-69.

Chen AJ, Dong J, Yuan XH, Bo H, Li SZ, Wang C, et al. Anti-H7N9 avian influenza A virus activity of interferon in pseudostratified human airway epithelium cell cultures. Virol J. 2019;16(1):44.

Myerburg MM, Latoche JD, McKenna EE, Stabile LP, Siegfried JS, Feghali-Bostwick CA, et al. Hepatocyte growth factor and other fibroblast secretions modulate the phenotype of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2007;292(6):L1352-60.

Steinke M, Gross R, Walles H, Gangnus R, Schutze K, Walles T. An engineered 3D human airway mucosa model based on an SIS scaffold. Biomaterials. 2014;35(26):7355-62.

Ishikawa S, Ishimori K, Ito S. A 3D epithelial-mesenchymal co-culture model of human bronchial tissue recapitulates multiple features of airway tissue remodeling by TGF-beta1 treatment. Respir Res. 2017;18(1):195.

Scheffler S, Dieken H, Krischenowski O, Aufderheide M. Cytotoxic Evaluation of e-Liquid Aerosol using Different Lung-Derived Cell Models. Int J Environ Res Public Health. 2015;12(10):12466-74.

Rayner RE, Makena P, Prasad GL, Cormet-Boyaka E. Optimization of Normal Human Bronchial Epithelial (NHBE) Cell 3D Cultures for in vitro Lung Model Studies. Scientific reports. 2019;9(1):500.

Lacroix G, Koch W, Ritter D, Gutleb AC, Larsen ST, Loret T, et al. Air-Liquid Interface In Vitro Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations. Appl In Vitro Toxicol. 2018;4(2):91-106.

Bukowy-Bieryllo Z. Long-term differentiating primary human airway epithelial cell cultures: how far are we? Cell Commun Signal. 2021;19(1):63.

Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nature reviews Molecular cell biology. 2016;17(9):564-80.

Tapia R, Kralicek SE, Hecht GA. Modulation of epithelial cell polarity by bacterial pathogens. Ann N Y Acad Sci. 2017;1405(1):16-24.

Molenda N, Urbanova K, Weiser N, Kusche-Vihrog K, Gunzel D, Schillers H. Paracellular transport through healthy and cystic fibrosis bronchial epithelial cell lines--do we have a proper model? PloS one. 2014;9(6):e100621.

Gao W, Li L, Wang Y, Zhang S, Adcock IM, Barnes PJ, et al. Bronchial epithelial cells: The key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology. 2015;20(5):722-9.

Published
2024-05-09
How to Cite
Cerecedo, D. (2024). Exploring In Vitro Models: Advances and Challenges in Human Respiratory Tract Research. Mexican Journal of Medical Research ICSA, 12(24). Retrieved from https://repository.uaeh.edu.mx/revistas/index.php/MJMR/article/view/12347