Akkermansia muciniphila: The role as a probiotic bacteria for the prevention and treatment of metabolic syndrome
DOI:
https://doi.org/10.29057/mjmr.v13i26.14367Keywords:
Akkermansia muciniphila, Metabolic Syndrome, Insulin Resistance, Obesity, Type 2 diabetes mellitus, Gut microbiotaAbstract
Metabolic syndrome is a health problem triggered by several metabolic parameters, which are common in the mexican population as well as worldwide, and which is often not treated globally but rather individually for each of these aspects. This review aims to present the different mechanisms and effects of probiotic bacteria for the prevention or treatment of MetS as a natural therapeutic alternative. The role of the intestinal microbiota in human health is crucial, and alterations in its abundance and composition are believed to be related to multiple diseases. Numerous studies have shown a strong association between certain microorganisms and diseases such as obesity, inflammatory diseases, type 2 diabetes mellitus, different types of cancer and neurodegenerative diseases Akkermansia muciniphila increases intestinal mucosal thicknesss and produces hort-chain fatty acids that may play an important role in the health and inflammatory status of the host. The Akkermansia muciniphila bacteria turns out to be a very promising probiotic for the treatment or prevention of many diseases, but especially those resulting in metabolic disorders or metabolic syndrome, and the supplementation along with a low-calorie diet and functional food, it could favor the amount of this bacteria in large intestine and its reproduction.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- N/A
- Publisher
- Universidad Autónoma del Estado de Hidalgo
References
[1] Carvajal Carvajal C. Síndrome metabólico: definiciones, epidemiología, etiología, componentes y tratamiento. Med. Leg. Costa Rica 2017; 34(1): 175–93.
[2] Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015; 6(2): 109–20.
[3] Vykoukal D, Davies MG. Vascular biology of metabolic syndrome. J. Vasc. Surg. 2011; 54(3): 819–31.
[4] Sperling LS, Mechanick JI, Neeland IJ, Herrick CJ, Després J-P, Ndumele CE, et al. The CardioMetabolic Health Alliance: Working toward a new care model for metabolic syndrome. JACC Journals 2015; 66(9): 1050–67.
[5] Grundy SM. Metabolic syndrome update. Trends Cardiovasc. Med. 2016; 26(4): 364–73.
[6] Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med. 2011; 9: 48.
[7] Desroches S, Lamarche B. The evolving definitions and increasing prevalence of metabolic syndrome. Appl. Physiol. Nutr. Metab. 2007; 32(1): 23–32.
[8] Kolovou GD, Anagnostopoulou KK, Salpea KD, Mikhailidis DP. The prevalence of metabolic syndrome in various populations. Am. J. Med. Sci. 2007; 333(6): 362–71.
[9] Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: Prevalence in worldwide populations. Endocrinol. Metab. Clin. North Am. 2004; 33(2): 351–75.
[10] Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: Prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch. Intern. Med. 2003; 163(4): 427–36.
[11] Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: Findings from the third National Health and Nutrition Examination Survey. JAMA 2002; 287(3): 356–9.
[12] Ponholzer A, Temml C, Rauchenwald M, Marszalek M, Madersbacher S. Is the metabolic syndrome a risk factor for female sexual dysfunction in sexually active women? Int. J. Impot. Res. 2008; 20(1): 100–4.
[13] Rojas-Martínez R, Aguilar-Salinas CA, Romero-Martínez M, Castro-Porras L, Gómez-Velasco D, Mehta R. Trends in the prevalence of metabolic syndrome and its components in Mexican adults, 2006-2018. Salud Pública Mex. 2021; 63(6): 713–24.
[14] Secretaría de Economía [Internet]. La situación de sobrepeso, obesidad y diabetes ha provocado una emergencia económica nacional. 2020. [cited 2025 feb 06]. Available from: https://www.gob.mx/se/articulos/la-situacion-de-sobrepeso-obesidad-y-diabetes-ha-provocado-emergencia-economica-nacional
[15] Lizarzaburu JC. Síndrome metabólico: concepto y aplicación práctica. An. Fac. Med. 2013; 74(4): 315–20.
[16] Cani PD. Gut microbiota - at the intersection of everything? Nat. Rev. Gastroenterol. Hepatol. 2017; 14(6): 321–322.
[17] Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 2022; 19(10): 625–37.
[18] Ghaffari S, Abbasi A, Somi MH, Moaddab SY, Nikniaz L, Kafil HS, et al. Akkermansia muciniphila: from its critical role in human health to strategies for promoting its abundance in human gut microbiome. Crit. Rev. Food Sci. Nutr. 2023; 63(25): 7357–77.
[19] Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J. Nutr. 2017; 147(7): 1468S-1475S.
[20] Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. Int. J. Mol. Sci. 2023; 24(9): 1-5.
[21] Díaz-Gerevini GT, Daín A, Pasqualini ME, López CB, Eynard AR, Repossi G. Diabetic encephalopathy: beneficial effects of supplementation with fatty acids ω3 and nordihydroguaiaretic acid in a spontaneous diabetes rat model. Lipids Health Dis. 2019; 18(1): 43.
[22] Kassir R, Gimet P, Hupin D, Boutet C, Barthélémy JC, Roche F, et al. Brain alterations associated with overweight evaluated by body mass index or body fat index in an elderly population: the PROOF study. Front. Endocrinol. (Lausanne). 2023; 14: 1-9.
[23] Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, et al. The contribution of gut Microbiota–brain axis in the development of brain disorders. Front. Neurosci. 2021; 15: 1-14.
[24] Zhao Y, Yang H, Wu P, Yang S, Xue W, Xu , et al. Akkermansia muciniphila: A promising probiotic against inflammation and metabolic disorders. Virulence 2024; 15(1): 1-21.
[25] Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 2016; 106: 171–81.
[26] Matta J, Zins M, Feral-Pierssens A, Carette C, Ozguler A, Goldberg M, et al. Prévalence du surpoids, de l’obésité et des facteurs de risque cardio-métaboliques dans la cohorte Constances. Bull. Hebd. Inf. Épidémiol. 2016; 2016(35-36): 640-646
[27] Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528(7581): 262–66.
[28] Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA. 2009; 106(7): 2365–70.
[29] Gimeno ML, Martínez CB, Calleja IP, Lenguas JAC. Síndrome metabólico. Concepto y fisiopatología. Rev. Esp. Cardiol. Supl. 2005; 5(4): 3D-10D.
[30] Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J. Clin. Invest. 2019; 129(10): 4050–7.
[31] Diaz Carrasco JM, Casanova NA, Fernández Miyakawa ME. Microbiota, gut health and chicken productivity: What is the connection? Microorganisms 2019; 7(10): 1-15.
[32] Milanović V, Cardinali F, Aquilanti L, Garofalo C, Roncolini A, Sabbatini R, et al. A Glimpse into the microbiota of marketed ready-to-eat crickets (Acheta domesticus). Indian J. Microbiol. 2020; 60(1): 115–8.
[33] Osuoha JO, Anyanwu BO, Ejileugha C. Pharmaceuticals and personal care products as emerging contaminants: Need for combined treatment strategy. J. Hazard. Mater. Advan. 2023; 9: 1-15.
[34] Raffa CM, Chiampo F. Bioremediation of agricultural soils polluted with pesticides: A review. Bioengineering (Basel). 2021; 8(7): 1-29.
[35] Reyes Diaz RA, Cruz Lara NM. Papel de la microbiota intestinal en el desarrollo del síndrome metabólico: revisión narrativa. Rev. Nutr. Clin. Metab. 2024; 7(1): 45–54.
[36] Li J, Butcher J, Mack D, Stintzi A. Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease. Inflamm. Bowel Dis. 2015; 21(1): 139–53.
[37] Delzenne NM, Neyrinck AM, Cani PD. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microb. Cell Fact. 2011; 10(1): S10.
[38] Milian Hernández EJ, Anzules Guerra JB, Betancourt-Castellanos L, Izaguirre-Bordelois M, Caballero Torres ÁE. Síndrome metabólico y su relación con la microbiota intestinal. Rev. Repert. Med. Cir. 2024; 33(1): 14–20.
[39] Wei X, Min Y, Song G, Ye X, Liu L. Association between triglyceride-glucose related indices with the all-cause and cause-specific mortality among the population with metabolic syndrome. Cardiovasc. Diabetol. 2024; 23(1): 134
[40] López-Goñi I [Internet]. Una bacteria que heredamos de nuestra madre es un nuevo alimento. The Conversation. [cited 2025 feb 06]. 2022. Available from: http://theconversation.com/una-bacteria-que-heredamos-de-nuestra-madre-es-un-nuevo-alimento-194765
[41] Xu Y, Wang N, Tan H-Y, Li S, Zhang C, Feng Y. Function of Akkermansia muciniphila in obesity: Interactions with lipid metabolism, immune response and gut systems. Front Microbiol. 2020; 11: 1-12.
[42] Van Passel MWJ, Kant R, Zoetendal EG, Plugge CM, Derrien M, Malfatti SA, et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS One 2011; 6(3): 1-6.
[43] Rodrigues VF, Elias-Oliveira J, Pereira ÍS, Pereira JA, Barbosa SC, Machado MSG, et al. Akkermansia muciniphila and gut immune system: A good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front Immunol. 2022; 13: 2-5.
[44] González Hernández MA, Canfora EE, Jocken JWE, Blaak EE. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 2019; 11(8): 1-8
[45] El Hage R, Hernandez-Sanabria E, Calatayud Arroyo M, Van de Wiele T. Supplementation of a propionate-producing consortium improves markers of insulin resistance in an in vitro model of gut-liver axis. Am. J. Physiol. Endocrinol. Metab. 2020; 318(5): E742–9.
[46] Moser B, Milligan MA, Dao MC. The Microbiota-gut-brain axis: Clinical applications in obesity and type 2 diabetes. Rev. Invest. Clin. 2022; 74(6): 302–13.
[47] Salvi PS, Cowles RA. Butyrate and the intestinal epithelium: Modulation of proliferation and inflammation in homeostasis and disease. Cells. 2021; 10(7): 1775.
[48] He K, An F, Zhang H, Yan D, Li T, Wu J, et al. Akkermansia muciniphila: A potential target for the prevention of diabetes. Foods 2024; 14(1): 1-21.
[49] Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC, et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio. 2014; 5(4): 1-10.
[50] Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut Microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr. Nutr. Rep. 2018; 7(4): 198–206.
[51] Zhang T, Li Q, Cheng L, Buch H, Zhang F. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 2019; 12(6): 1109–25.
[52] Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. 2013; 110(22): 9066–71.
[53] Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009; 58(8): 1091–103.
[54] Kim S, Lee Y, Kim Y, Seo Y, Lee H, Ha J, et al. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl. Environ. Microbiol. 2020; 86(7): e03004-19.
[55] Linden AG, Li S, Choi HY, Fang F, Fukasawa M, Uyeda K, et al. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J. Lipid Res. 2018; 59(3): 475–87.
[56] Ghotaslou R, Nabizadeh E, Memar MY, Law WMH, Ozma MA, Abdi M, et al. The metabolic, protective, and immune functions of Akkermansia muciniphila. Microbiol. Res. 2023; 266: 1-11.
[57] Kim S-M, Park S, Hwang S-H, Lee E-Y, Kim J-H, Lee GS, et al. Secreted Akkermansia muciniphila threonyl-tRNA synthetase functions to monitor and modulate immune homeostasis. Cell Host Microbe. 2023; 31(6): 1021-1037.
[58] Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020; 30(6): 492–506.
[59] Xu W, Zhang S, Yang Y, Zhan J, Zang C, Yu H, et al. Therapeutic potential of dietary nutrients and medicinal foods against metabolic disorders: Targeting Akkermansia muciniphila. Food Front. 2024; 5(2): 329–49.
[60] Zhou J-M, Zhang H-J, Wu S-G, Qiu K, Fu Y, Qi G-H, et al. Supplemental xylooligosaccharide modulates intestinal mucosal barrier and cecal microbiota in laying hens fed oxidized fish oil. Front. Microbiol. 2021; 12: 1-13.
[61] He N, Wang S, Lv Z, Zhao W, Li S. Low molecular weight chitosan oligosaccharides (LMW-COSs) prevent obesity-related metabolic abnormalities in association with the modification of gut microbiota in high-fat diet (HFD)-fed mice. Food Funct. 2020; 11: 9947–59.
[62] Wang Y, Liu S, Tang D, Dong R, Feng Q. Chitosan oligosaccharide ameliorates metabolic syndrome induced by overnutrition via altering gut microbiota. Front. Nutr. 2021; 8: 2-12.
[63] Fu J, Wang Y, Tan S, Wang J. Effects of banana resistant starch on the biochemical indexes and intestinal flora of obese rats induced by a high-fat diet and their correlation analysis. Front. Bioeng Biotechnol. 2021; 9: 1-14.
[64] Bao T, He F, Zhang X, Zhu L, Wang Z, Lu H, et al. Inulin exerts beneficial effects on non-alcoholic fatty liver disease via modulating gut microbiome and suppressing the Lipopolysaccharide-Toll-like receptor 4-Mψ-Nuclear factor-κB-nod-like receptor protein 3 pathway via gut-liver axis in mice. Front. Pharmacol. 2020; 11: 1-16.
[65] Yang C, Xu Z, Deng Q, Huang Q, Wang X, Huang F. Beneficial effects of flaxseed polysaccharides on metabolic syndrome via gut microbiota in high-fat diet fed mice. Food Res. Int. 2020; 131: 1-2.
[66] Wu H-Q, Ma Z-L, Zhang D-X, Wu P, Guo Y-H, Yang F, et al. Sequential extraction, characterization, and analysis of pumpkin polysaccharides for their hypoglycemic activities and effects on gut microbiota in mice. Front. Nutr. 2021; 8: 1-21.
[67] Wang X, Liu F, Cui Y, Yin Y, Li S, Li X. Apple polyphenols extracts ameliorate high carbohydrate diet-induced body weight gain by regulating the gut microbiota and appetite. J. Agric. Food Chem. 2022; 70(1): 196–210.
[68] Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015; 64(6): 872–83.
[69] Li Z, Henning SM, Lee R-P, Lu Q-Y, Summanen PH, Thames G, et al. Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food Funct. 2015; 6(8): 2487–95.
[70] Liu Z, Chen Q, Zhang C, Ni L. Comparative study of the anti-obesity and gut microbiota modulation effects of green tea phenolics and their oxidation products in high-fat-induced obese mice. Food Chem. 2022; 367: 130735.
[71] Verhoog S, Taneri PE, Roa Díaz ZM, Marques-Vidal P, Troup JP, et al. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A Systematic Review. Nutrients 2019; 11(7): 1565
[72] Medina-Vera I, Sanchez-Tapia M, Noriega-López L, Granados-Portillo O, Guevara-Cruz M, Flores-López A, et al. A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes. Diabetes Metab. 2019; 45(2): 122–31.
[73] Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 2019; 25(7): 1096–103.
[74] Fonseca M, Vedor R, Barbosa JC, Gomes AM, Machado D. Can a functional cheese spread incorporating Akkermansia muciniphila deliver beneficial physicochemical and biological properties while enhancing probiotic stability and viability during aerobic storage and in vitro digestion? LWT. 2024; 200: 4-7.
[75] Cani PD. Human gut microbiome: hopes, threats and promises. Gut 2018; 67(9): 1716–25.
[76] Ottman N, Reunanen J, Meijerink M, Pietilä TE, Kainulainen V, Klievink J, et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One 2017; 12(3): 8077-80.
[77] O’Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2017; 2(5): 1–6.
[78] Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015; 16(2): 164–77.
[79] Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016; 167(5): 1339-1353.
[80] Ganesh BP, Klopfleisch R, Loh G, Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella typhimurium-infected gnotobiotic mice. PLoS One 2013; 8(9): 1-13.
[81] Seregin SS, Golovchenko N, Schaf B, Chen J, Pudlo NA, Mitchell J, et al. NLRP6 protects Il10 mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Rep. 2017; 19(4): 733-45
[82] Dingemanse C., Belzer C., Van Hijum SAFT, Günthel M, Salvatori D, den Dunnen JT, et al. Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogénesis 2015; 36(11): 1388–1396.
[83] Bonnechère B, Amin N, van Duijn C. What is the key gut microbiota involved in neurological diseases? A systematic review. Int. J. Mol. Sci. 2022; 23(22): 13665.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Evelyn Meneses-Madrid, Claudia Elena Valadez-Serrano, Alicia Cervantes-Elizarrarás

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.