Use of Bovine Teeth in Mexico as a Substitute for a Human Dental Model

Authors

Keywords:

Bovine teeth, Dentistry, Preclinical research, Dental models, Dental chemical composition, Bovine breeds in Mexico

Abstract

Research and pre-clinical teaching in dentistry require dental models that simulate the characteristics of human teeth. However, ethical, and logistical limitations associated with the use of human teeth have driven the search for viable alternatives. Bovine teeth have emerged as a suitable option due to their availability, lower cost, and structural and chemical similarities to human teeth. This article reviews the reasons for their selection, the specific characteristics of bovine breeds used in Mexico, the types of teeth employed, and their preparation. Size, content, and chemical composition data are presented with comparative tables.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
3
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
70%
33%
Days to publication 
90
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
Universidad Autónoma del Estado de Hidalgo

References

[1] Yassen GH, Platt JA, Hara AT. Bovine teeth as substitute for human teeth in dental research: a review of literature. J. Oral Sci. 2011; 53(3): 273-82.

[2] Goetz K, Gutermuth AC, Wenz HJ, Groß D, Hertrampf K. Ethical issues in dental education-A cross-sectional study with pre-clinical and clinical dental students. Eur. J. Dent. Educ. 2024; 28(3): 833-9.

[3] Soares FZ, Follak A, da Rosa LS, Montagner AF, Lenzi TL, Rocha RO. Bovine tooth is a substitute for human tooth on bond strength studies: A systematic review and meta-analysis of in vitro studies. Dental Materials. 2016; 32(11): 1985-93.

[4] Ferracane JL. Models of caries formation around dental composite restorations. J. Dent. Res. 2017; 96(4): 364–71.

[5] Gelio MB, Zaniboni JF, Monteiro Jcc, Besegato JF, Pereira JR, Buchaim RL, et al. Medium-term evaluation of the bond strength and dentin penetration of self-adhesive resin cements to root dentin. Aust. Dent. J. 2024; 69(2): 93-101.

[6] Anido-Anido A, Amore R, Lewgoy H, Anauate-Netto C, da Silva T, de Paiva Gonçalves S. (2012). Comparative study of the bond strength to human and bovine dentin in three different depths. Braz. Dent. Sci. 2012; 15(2): 56-62.

[7] Ferreira Figueiredo de Carvalho M, Neiva Leijôto-Lannes AC, Nunes de Rodrigues MC, Capanema Nogueira L, Lyrio Ferraz NK, Nogueira Moreira A, et al. Viability of Bovine Teeth as a Substrate in Bond Strength Tests: A Systematic Review and Meta-analysis. J. Adhes. Dent. 2018; 20(6): 471-9.

[8] Revilla-León M, Sadeghpour M, Özcan M. An update on applications of 3D printing technologies used for processing polymers used in implant dentistry. Odontology. 2020; 108(3): 331–8.

[9] Baena Lopes M, Coelho Sinhoreti MA, Correr Sobrinho L, Consani S. Coparative study of the dental substrate used in shear bond strength tests. Pesqui. Odontol. Bras. 2003; 17(2): 171–5.

[10] Perry S, Bridges SM, Burrow MF. A review of the use of simulation in dental education. Simul. Healthc. 2015; 10(1): 31–7.

[11] Bakeman EM, Rego N, Chaiyabutr Y, Kois JC. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations. Oper. Dent. 2015; 40(2): 211–7.

[12] Reis AF, Giannini M, Kavaguchi A, Soares CJ, Line SRP. Comparison of microtensile bond strength to enamel and dentin of human, bovine and porcine teeth. J. Adhes. Dent. 2004; 6(2): 117-21.

[13] Kajishima Konno AN, Coelho Sinhoreti MA, Consani S, Correr Sobrinho L, Xediek Consani RL. Storage effect on the shear bond strength of adhesive systems. Braz. Dent. J. 2003; 14(1): 42–47.

[14] Attin T, Wegehaupt F, Gries D, Wiegand A. The potential of deciduous and permanent bovine enamel as substitute for deciduous and permanent human enamel: Erosion-abrasion experiments. J. Dent. 2007; 35(10):773–7.

[15] Scherrer SS, Cesar PF, Swain MV. Direct comparison of the bond strength results of the different test methods: a critical literature review. Dent. Mater. 2010; 26(2): e78–93.

[16] Goracci C, Sadek FT, Monticelli F, Cardoso PEC, Ferrari M. Influence of substrate, shape, and thickness on microtensile specimens' structural integrity and their measured bond strengths. Dent. Mater. 2004; 20(7): 643–54.

[17] Oshiro Tanaka JL, Medici Filho E, Pereira Salgado JA, Castillo Salgado MA, de Moraes LC, de Moraes MEL, et al. Comparative analysis of human and bovine teeth: radiographic density. Braz. Oral. Res. 2008; 22(4): 346-51.

[18] Khvostenko D, Hilton TJ, Ferracane JL, Mitchell JC, Kruzic JJ. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent. Mater. 2016 Jan; 32(1): 73–81.

[19] Alamdarloo Y, Mosaddad SA, Golfeshan F. Mechanical properties of combined packable and high-filled flowable composite used for the fixed retainer: an in vitro study. BMC. Oral. Health. 2024; 24(1):676.

[20] Rüttermann S, Braun A, Janda R. Shear bond strength and fracture analysis of human vs. bovine teeth. PLoS. One. 2013; 8(3): e59181.

[21 Franchini Pan Martinez L, Ferraz Nayara KL, Lannes Amanda CNL, , Rodrigues MC, De Carvalho MF, Zina LG, et al. Can bovine tooth replace human tooth in laboratory studies? A systematic review. J. Adhes. Sci. Technol. 2023; 37(7): 1279-98.

[22] Ortiz-Ruiz AJ, Teruel-Fernández JD, Alcolea-Rubio LA, Hernández-Fernández A, Martínez-Beneyto Y, Gispert-Guirado F. Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth. Ann. Anat. 2018; 218: 7–17.

[23] National Research Council. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington, DC: National Academies Press; 2011.

[24] Cochrane S, Burrow MF, Parashos P. Effect on the mechanical properties of human and bovine dentine of intracanal medicaments and irrigants. Aust. Dent. J. 2019; 64(1): 35-42.

[25] Lee JJ, Nettey-Marbell A, Cook Jr A, Pimenta LAF, Leonard R, Ritter AV. Using extracted teeth for research: the effect of storage medium and sterilization on dentin bond strengths. J. Am. Dent. Assoc. 2007; 138(12): 1599-603.

[26] Callejas Juárez N, Salas González JM. Estructura de la red de mercado de bovinos en México, 2017-2021. Rev. Mex. de cienc. pecuarias. 2023; 14(4): 745-59.

[27] Krifka S, Börzsönyi A, Koch A, Hiller KA, Schmalz G, Friedl KH. Bond strength of adhesive systems to dentin and enamel—human vs. bovine primary teeth in vitro. Dent. Mater. 2008; 24(7):888–94.

[28] Oesterle LJ, Shellhart WC, Belanger GK. The use of bovine enamel in bonding studies. Am. J. Orthod. Dentofacial Orthop. 1998; 114(5): 514–9.

[29] de Oliveira da Rosa WL, Piva E, Fernandes da Silva A. Bond strength of universal adhesives: a systematic review and meta-analysis. J. Dent. 2015; 43(7):765–76.

[30] Bin AlShaibah WM, El-Shehaby FA, El-Dokky NA, Reda AR. Comparative study on the microbial adhesion to preveneered and stainless steel crowns. J. Indian Soc. Pedod. Prev. Dent. 2012; 30(3): 206–11.

[31] Sahebi S, Sobhnamayan F, Hasani S, Mahmoodi N, Dadgar D. Bovine and Ovine Teeth as a Substitute for the Human Teeth: An Experimental Study. J. Dent. (Shiraz). 2024; 25(2): 132-7

[32] Castellanos JE, Marín Gallón LM, Úsuga Vacca MV, Castiblanco Rubio GA, Martignon Biermann S. La remineralización del esmalte bajo el entendimiento actual de la caries dental. Univ. Odontol. 2013; 32(69): 49-59.

[33] Bartlett JD, Simmer JP. New perspectives on amelotin and amelogenesis. J. Dent. Res. 2015; 94(5): 642-4.

[34] Durso G, Tanevitch A, Abal A, Llompart G, Pérez P, Felipe P. Estudio de la micrestructura del esmalte dental humano en relación con la microdureza y la composición química. Rev. Cs. Morfol. 2017; 19(2): 1-9.

[35] Teruel JD, Alcolea A, Hernández A, Ortiz Ruiz AJ. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch. Oral Biol. 2015; 60(5): 768-75.

[36] Cople Maia LC, Ribeiro de Souza IP, Aparecido Cury J. Effect of a combination of fluoride dentifrice and varnish on enamel surface rehardening and fluoride uptake in vitro. Eur. J. Oral. Sci. 2003; 111(1):68–72.

[37] Yilmaz ED, Koldehoff J, Schneider GA. On the systematic documentation of the structural characteristics of bovine enamel: A critic to the protein sheath concept. Dent. Mat. 2018; 34(10): 1518-30.

[38] Hurtado PM, Tobar-Tosse F, Osorio J, Orozco L, Moreno F. Amelogénesis imperfecta: Revisión de la literatura. Rev. Estomatol. 2015; 23(1): 32-41.

[39] Hinostroza Izaguirre MC, Navarro Beteta RJ, Abal Perleche DM, Perona Miguel de Priego G. Factores genéticos asociados a la hipomineralización incisivo-molar. Revisión de literatura. Rev. Cient. Odontol. 2019; 7(1): 148–56.

[40] Bronckers ALJJ. Ion transport by ameloblasts during amelogenesis. J. Dent. Res. 2017; 96(3): 243-53.

[41] Ghadimi E, Eimar H, Marelli B, Nazhat SN, Asgharian M, Vali H, et al. Trace elements can influence the physical properties of tooth enamel. Springerplus. 2013; 2: 499.

[42] Schmeling M. Selección de color y reproducción en odontología. Parte 3: Escogencia del color de forma visual e intrumental. ODOVTOS-Int. J. Dental Sci. 2017; 19(1): 23-32.

[43] Reyes-Gasga J. Estudio del esmalte dental humano por microscopía electrónica. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI. 2021; 9(Especial2): 1–6.

[44] Kiani AK, Pheby D, Henehan G, Brown R, Sieving P, Sykora P, Marks R, et al. Ethical considerations regarding animal experimentation. J. Prev. Med. Hyg. 2022; 63(2 Suppl 3): E255–66.

[45] da Silva CL, Cavalheiro CP, Gimenez T, Imparato JCP, Bussadori SK, Lenzi TL. Bonding performance of universal and contemporary adhesives in primary teeth: a systematic review and network meta-analysis of in vitro studies. Pediatr. Dent. 2021; 43(3):170–7.

[46] Arango-Santander S, Montoya C, Peláez-Vargas A, Ossa EA. Chemical, structural and mechanical characterization of bovine enamel. Arch. Oral Biol. 2020; 109: 104573.

[47] Möhring S, Cieplik F, Hiller KA, Ebensberger H, Ferstl G, Hermens J, et al. Elemental compositions of enamel or dentin in human and bovine teeth differ from murine teeth. Materials. (Basel). 2023; 16(4):1514.

[48] Atash R, Van den Abbeele A. Bond strengths of eight contemporary adhesives to enamel and to dentine: an in vitro study on bovine primary teeth. Int. J. Paediatr. Dent. 2005; 15(4): 264–73.

[49] Hua LC, Wang WY, Swain MV, Zhu CL, Huang HB, Du ZR, et al. The dehydration effect on mechanical properties of tooth enamel. J. Mech. Behav. Biomed. Mater. 2019; 95: 210-4.

[50] Hiraishi N, Gondo T, Shimada Y, Hill R, Hayashi F. Crystallographic and Physicochemical Analysis of Bovine and Human Teeth Using X-ray Diffraction and Solid-State Nuclear Magnetic Resonance. J. Funct. Biomater. 2022; 13(4):254.

[51] Moosavi H, Hajizadeh H, Mamaghani ZSZ, Rezaei F, Ahrari F. Comparison of various methods of restoring adhesion to recently bleached enamel. BMC Oral Health. 2024; 24(1): 942.

[52] Lezcano MR, Enz N, Affur MC, Gili MA. Histological characteristics of bovine dentin using Masson's Trichrome staining. Rev. Cient. Odontol. (Lima). 2023; 11(4): e176.

[53] Körner P, Gerber SC, Gantner C, Hamza B, Wegehaupt FJ, Attin T, et al. A laboratory pilot study on voids in flowable bulk-fill composite restorations in bovine Class-II and endodontic access cavities after sonic vibration. Sci. Rep. 2023; 13(1) :18557.

[54] Baia JCP, Oliveira RP, Ribeiro MES, Lima RR, Loretto SC, Silva E Souza MH. Influence of prolonged dental bleaching on the adhesive bond strength to enamel surfaces. Int. J. Dent. 2020; 2020(1): 2609359.

[55] Koizumi H, Nakayama D, Komine F, Blatz MB, Matsumura H. Bonding of resin-based luting cements to zirconia with and without the use of ceramic priming agents. J. Adhes. Dent. 2012; 14(4): 385-92.

[56] Frankenberger R, Reinelt C, Petschelt A, Krämer N. Operator vs. material influence on clinical outcome of bonded ceramic inlays. Dent. Mater. 2009; 25(8):960–8.

[57] Borges GA, Sophr AM, de Goes MF, Correr Sobrinho L, Chan DCN. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J. Prosthet. Dent. 2003; 89(5): 479-88.

[58] Reis AF, Giannini M, Lovadino JR, Ambrosano GM. Effects of various finishing systems on the surface roughness and staining susceptibility of packable composite resins. Dent. Mater. 2003; 19(1): 12–8.

[59] Magalhães AC, Wiegand A, Rios D, Marques Honório H, Afonso Rabelo Buzalaf M. Insights into preventive measures for dental erosion. J. Appl. Oral Sci. 2009; 17(2): 75-86.

[60] Lussi A, Carvalho TS. The future of fluorides and other protective agents in erosion prevention. Caries Res. 2015; 49 (Suppl 1):18-29.

[61] Hove LH, Holme B, Young A, Tveit AB. The protective effect of TiF4, SnF2 and NaF against erosion-like lesions in situ. Caries Res. 2008; 42(1):68–72.

[62] Ganss C, Schlueter N, Hardt M, von Hinckeldey J, Klimek J. Effects of toothbrushing on eroded dentine. Eur. J. Oral Sci. 2007; 115(5): 390–6.

[63] Amaechi BT, Higham SM. Dental erosion: possible approaches to prevention and control. J. Dent. 2005; 33(3): 243-52.

[64] Borouziniat A, Majidinia S, Shirazi AS, Kahnemuee F. Comparison of bond strength of self-adhesive and self-etch or total-etch resin cement to zirconia: a systematic review and meta-analysis. J. Conserv. Dent. Endod. 2024;27(2):113–25.

[65] Chatterjee N, Ghosh A. Current scenario on adhesion to zirconia; surface pretreatments and resin cements: A systematic review. J. Indian Prosthodont. Soc. 2022;22(1):13-20.

[66] Vogl V, Hiller KA, Buchalla W, Federlin M, Schmalz G. Controlled, prospective, randomized, clinical split-mouth evaluation of partial ceramic crowns luted with a new, universal adhesive system/resin cement: results after 18 months. Clin. Oral. Investig. 2016; 20(9): 2481–92.

[67] Unsal KA, Karaman E. Effect of additional light curing on colour stability of composite resins. Int. Dent. J. 2022;72(3):346–52.

[68] Devlukia S, Hammond L, Malik K. Is surface roughness of direct resin composite restorations material and polisher-dependent? A systematic review. J. Esthet. Restor. Dent. 2023; 35(6): 947–67.

[69] Kwon SR, Wertz PW. Review of the Mechanism of Tooth Whitening. J. Esthet. Restor. Dent. 2015; 27(5): 240-57.

[70] Joiner A. Whitening toothpastes: a review of the literature. J. Dent. 2010; 38(Suppl 2): e17-24.

[71] Nunes Leite Lima DA, Faria e Silva AL, Baggio Aguiar FH, Liporoni PCS, Munin E, Bovi Ambrosano GM, et al. In vitro assessment of the effectiveness of whitening dentifrices for the removal of extrinsic tooth stains. Braz. Oral Res. 2008; 22(2): 106-11.

[72] Torres CR, Wiegand A, Sener B, Attin T. Influence of chemical activation of a 35% hydrogen peroxide bleaching gel on its penetration and efficacy—an in vitro study. J. Dent. 2010; 38(10):838–46.

[73] Bayne SC. Correlation of clinical performance with 'in vitro tests' of restorative dental materials that use polymer-based matrices. Dent. Mater. 2012; 28(1): 52-71.

[74] Saleh F, Taymour N. Validity of using bovine teeth as a substitute for human counterparts in adhesive tests. East. Mediterr. Health J. 2003; 9(1-2): 201-7.

[75] Dunn WJ, Söderholm KJ. Comparison of shear and flexural bond strength tests versus failure modes of dentin bonding systems. Am. J. Dent. 2001; 14(5):297-303.

[76] DeWald JP. The use of extracted teeth for in vitro bonding studies: a review of infection control considerations. Dent. Mater. 1997; 13(2):74-81.

[77] Richter C, Jost-Brinkmann PG. Shear bond strength of different adhesives tested in accordance with DIN 13990-1/-2 and using various methods of enamel conditioning. J. Orofac. Orthop. 2015; 76(2): 175–87.

[78] Osorio R, Pisani-Proenca J, Erhardt MC, Osorio E, Aguilera FS, Tay FR, et al. Resistance of ten contemporary adhesives to resin-dentine bond degradation. J. Dent. 2008; 36(2): 163–9.

[79] Gomes de Oliveira S, Kotowski N, Rodrigues Sampaio-Filho H, Baggio Aguiar FH, Rivera Dávila AM, Jardim R. Metalloproteinases in Restorative Dentistry: An In Silico Study toward an Ideal Animal Model. Biomedicines. 2023; 11(11): 3042.

[80] Lezcano MR. Dientes bovinos en odontología: Use of Bovine Teeth in Dentistry. Rev. Odontol. Científica Chilena. 2023; 2(1): 31-6.

[81] Posada MC, Sánches CF, Gallego GJ, Peláez Vargas A, Restrepo LF, López JD. "Dientes de bovino como sustituto de dientes humanos para su uso en la odontología". Revisión de literatura. Rev. CES. Odontol. 2006; 19(1): 63-8.

[82] Yavuz I, Tumen EC, Kaya CA, Dogan MS, Gunay A, Unal M, et al. The reliability of microleakage studies using dog and bovine primary teeth instead of human primary teeth. Eur. J. Paediatr. Dent. 2013; 14(1): 42–6.

[83] Reeves GW, Fitchie JG, Hembree Jr JH, Puckett AD. Microleakage of new dentin bonding systems using human and bovine teeth. Oper. Dent. 1995; 20(6):230–5.

[84] Jasinevicius TR, Landers M, Nelson S, Urbankova A. An evaluation of two dental simulation systems: virtual reality versus contemporary non-computer-assisted. J. Dent. Educ. 2004; 68(11): 1151-62.

Downloads

Published

2025-05-23

How to Cite

Pacheco Hernández, M. S. (2025). Use of Bovine Teeth in Mexico as a Substitute for a Human Dental Model. Mexican Journal of Medical Research ICSA, 14(27), 9–16. Retrieved from https://repository.uaeh.edu.mx/revistas/index.php/MJMR/article/view/14561