Omics analysis in nutrition science

Keywords: Nutrigenomics, epigenetic, proteomic, personalized nutrition, metabolomic, transcriptomic, human nutriomics

Abstract

The prevalence of diseases affecting human health related to the environment and inadequate nutrition is high. Strategies that seek to mitigate them have focused on lifestyle changes and healthy nutrition focusing on general guidelines that do not benefit all individuals. Therefore, new omics approaches have been proposed. The word "omics" is used as a suffix in molecular biology and consists of the study, quantification, identification and characterization of the whole or a set of molecules involved in the structure, function and dynamics of a cell, tissue or organism. Mainly genomics, epigenomics, transcriptomics, proteomics and metabolomics. In this regard, human nutriomics combines food sciences with omics focused on the genome of each individual, in order to take advantage of interindividuality to promote nutritional strategies that prevent, manage and treat diseases and optimize health. However, these novel tools present challenges when implementing them and interpreting their results, so it is recommended to continue conducting research in the area and training in the management of techniques and interpretation of results for the full exploitation of nutrition in the future. This article aims to provide health professionals with general information on the different omics approaches involved in nutritional sciences in order to elucidate the molecular mechanisms focused on personalized nutrition.

Downloads

Download data is not yet available.

References

Sales NMR, Pelegrini PB, Goersch MC. Nutrigenomics: definitions and advances of this new science. J. Nutr. Metab. 2014;2014:202759.

Blaak EE. Current metabolic perspective on malnutrition in obesity: towards more subgroup-based nutritional approaches? Proc. Nutr. Soc. 2020;79(3):331–7.

Bush CL, Blumberg JB, El-Sohemy A, Minich DM, Ordovás JM, Reed DG, et al. Toward the Definition of Personalized Nutrition: A Proposal by The American Nutrition Association. J. Am. Coll. Nutr. 2020;39(1):5–15.

Vailati-Riboni M, Palombo V, Loor JJ. What Are Omics Sciences? In: Periparturient Diseases of Dairy Cows: A Systems Biology Approach. Cham: Springer; 2017: 1–7.

Daimiel L, Vargas T, Ramírez de Molina A. Nutritional genomics for the characterization of the effect of bioactive molecules in lipid metabolism and related pathways: General. Electroph. 2012;33(15):2266–89.

VanBuren C, Imrhan V, Vijayagopal P, Solis-Pérez E, López-Cabanillas Lomelí M, Gonzalez-Garza R, et al. “Omics” Education in Dietetic Curricula: A Comparison between Two Institutions in the USA and Mexico. Lifest. Genom. 2018;11(3–6):136–46.

Bassaganya-Riera J, Berry EM, Blaak EE, Burlingame B, le Coutre J, van Eden W, et al. Goals in Nutrition Science 2020-2025. Front. Nutr. 2021;7:606378.

Ronteltap A, van Trijp JCM, Renes RJ. Consumer acceptance of nutrigenomics-based personalised nutrition. Br. J. Nutr. 2008;101(1):132–44.

Müller M, Kersten S. Nutrigenomics: goals and strategies. Nat. Rev. Genet. 2003;4(4):315–22.

Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nat. Rev. Methods. Primer. 2021;1(1):59.

Mullins VA, Bresette W, Johnstone L, Hallmark B, Chilton FH. Genomics in Personalized Nutrition: Can You “Eat for Your Genes”?. Nutrients. 2020;12(10):3118.

Medina-Gomez C, Felix JF, Estrada K, Peters MJ, Herrera L, Kruithof CJ, et al. Challenges in conducting genome-wide association studies in highly admixed multi-ethnic populations: the Generation R Study. Eur. J. Epidemiol. 2015;30(4):317–30.

Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 2018;50(11):1505–13.

Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PIW, Chen H, et al. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science. 2007;316(5829):1331–6.

Zapata-Bravo E, Pacheco-Orozco RA, Payán-Gómez C, López-Rippe J. Abordaje nutrigenómico de la obesidad: ¿dónde estamos? Rev. Nutr. Clínic. Metab. 2021;4(1):25–34.

Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8.

Tiffon C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int. J. Mol. Sci. 2018;19(11):3425.

Keating ST, El-Osta A. Epigenetics and Metabolism. Circ. Res. 2015;116(4):715–36.

Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. 2008;105(44):17046–9.

Weisbeck A, Jansen R. Nutrients and the Pancreas: An Epigenetic Perspective. Nutrients. 2017;9(3):283.

Leung A, Trac C, Du J, Natarajan R, Schones DE. Persistent Chromatin Modifications Induced by High Fat Diet. J. Biol. Chem. 2016;291(20):10446–55.

Liu B, Qian S-B. Translational Regulation in Nutrigenomics. Adv. Nutr. 2011;2(6):511–9.

Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O’Neal DN, Januszewski AS. Biomarkers in Diabetic Retinopathy. Rev. Diabet. Stud. 2015;12(1–2):159–95.

Skol AD, Jung SC, Sokovic AM, Chen S, Fazal S, Sosina O, et al. Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes. ELife. 2020;9:e59980.

Trujillo E, Davis C, Milner J. Nutrigenomics, Proteomics, Metabolomics, and the Practice of Dietetics. J. Am. Diet. Assoc. 2006;106(3):403–13.

Castañer O, Corella D, Covas MI, Sorlí JV, Subirana I, et al. In vivo transcriptomic profile after a Mediterranean diet in high–cardiovascular risk patients: a randomized controlled trial. Am. J. Clin. Nutr. 2013;98(3):845–53.

Ferguson LR, De Caterina R, Görman U, Allayee H, Kohlmeier M, Prasad C, et al. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1 - Fields of Precision Nutrition. Lifest. Genom. 2016;9(1):12–27.

Rezzi S, Martin F-PJ, Kochhar S. Defining Personal Nutrition and Metabolic Health Through Metabonomics. In: Kroemer G, Mumberg D, Keun H, Riefke B, Steger-Hartmann T, Petersen K, editores. Oncogenes Meet. Metabolism. Berlin: Springer; 2008: 251–64.

Schönfeldt HC, Pretorius B, Hall N. Bioavailability of Nutrients. In: Encyclopedia of Food and Health. South Africa: Elsevier; 2016: 401–406.

Guasch-Ferré M, Hruby A, Toledo E, Clish CB, Martínez-González MA, Salas-Salvadó J, et al. Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis. Diabetes Care. 2016;39(5):833–46.

Newgard CB. Metabolomics and Metabolic Diseases: Where Do We Stand? Cell. Metab. 2017;25(1):43–56.

García-Cañas V, Simó C, León C, Cifuentes A. Advances in Nutrigenomics research: Novel and future analytical approaches to investigate the biological activity of natural compounds and food functions. J. Pharm. Biomed. Anal. 2010;51(2):290–304.

Walker ME, Song RJ, Xu X, Gerszten RE, Ngo D, Clish CB, et al. Proteomic and Metabolomic Correlates of Healthy Dietary Patterns: The Framingham Heart Study. Nutrients. 2020;12(5):1476.

Van Ommen B, van den Broek T, de Hoogh I, van Erk M, van Someren E, Rouhani-Rankouhi T, et al. Systems biology of personalized nutrition. Nutr. Rev. 2017;75(8):579–99.

Published
2022-07-05
How to Cite
Anaya Morua, W. (2022). Omics analysis in nutrition science. Mexican Journal of Medical Research ICSA, 10(20), 59-63. https://doi.org/10.29057/mjmr.v10i20.8893