Leche funcional: revisión de formulación, bioactividad y aceptación sensorial

Autores/as

DOI:

https://doi.org/10.29057/icap.v12iEspecial.15307

Palabras clave:

Microencapsulación, bioaccesibilidad, fortificación, fermentación, nutriómica

Resumen

Los productos lácteos funcionales han sido ampliamente investigados por su potencial para mejorar la salud y la nutrición mediante la incorporación de compuestos bioactivos y probióticos. Esta revisión analiza la formulación y evaluación de quesos, yogures y bebidas de suero funcionales, explorando cómo su composición y procesamiento tecnológico inciden en el valor nutricional, la bioactividad y la aceptación del consumidor. Se describen estrategias como la adición de prebióticos, probióticos, extractos vegetales y péptidos bioactivos generados por fermentación o hidrólisis. Estas intervenciones modifican propiedades fisicoquímicas, mejoran la capacidad antioxidante y favorecen la viabilidad microbiana. La inclusión de ácidos grasos poliinsaturados, compuestos fenólicos y péptidos mejora el perfil funcional de las matrices lácteas. En particular, las bebidas de suero enriquecidas con extractos de frutas o fermentadas mostraron buenos niveles de estabilidad y aceptabilidad. Se concluye que es viable optimizar productos lácteos sin comprometer su calidad sensorial. Se recomienda continuar con estudios clínicos y el desarrollo de formulaciones dirigidas a necesidades poblacionales específicas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] Estrella ME, Vega KM, Cavadiana HU, Caicedo LT. Alimentos funcionales: la tendencia de consumo del siglo XXI. RECIENA 2022;2:10–9. https://doi.org/10.47187/kmh29p98.

[2] Guerra-Torres IEDP, García-Guerra JI. Resúmenes de artículos académicos para la presentación de alimentos nutritivos y saludables. Una revista digital. Polo Conoc 2020;5:70–85. https://doi.org/10.23857/pc.v5i4.1367.

[3] Cifelli CJ. Looking beyond traditional nutrients: the role of bioactives and the food matrix on health. Nutr Rev 2021;79:1–3. https://doi.org/10.1093/nutrit/nuab100.

[4] Granato D, Branco GF, Cruz AG, Faria JDAF, Shah NP. Probiotic Dairy Products as Functional Foods. Compr Rev Food Sci Food Saf 2010;9:455–70. https://doi.org/10.1111/j.1541-4337.2010.00120.x.

[5] Silva JVC, Legland D, Cauty C, Kolotuev I, Floury J. Characterization of the microstructure of dairy systems using automated image analysis. Food Hydrocoll 2015;44:360–71. https://doi.org/10.1016/j.foodhyd.2014.09.028.

[6] Abdul Hakim BN, Xuan NJ, Oslan SNH. A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry. Foods 2023;12:2850. https://doi.org/10.3390/foods12152850.

[7] Ağagündüz D, Yılmaz B, Şahin TÖ, Güneşliol BE, Ayten Ş, Russo P, et al. Dairy Lactic Acid Bacteria and Their Potential Function in Dietetics: The Food–Gut-Health Axis. Foods 2021;10:3099. https://doi.org/10.3390/foods10123099.

[8] Kaur H, Kaur G, Ali SA. Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. Fermentation 2022;8:425. https://doi.org/10.3390/fermentation8090425.

[9] Mathur H, Beresford TP, Cotter PD. Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients 2020;12:1679. https://doi.org/10.3390/nu12061679.

[10] Ní Chonnacháin C, Feeney EL, Gollogly C, Shields DC, Loscher CE, Cotter PD, et al. The effects of dairy on the gut microbiome and symptoms in gastrointestinal disease cohorts: a systematic review. Gut Microbiome 2024;5:e5. https://doi.org/10.1017/gmb.2024.2.

[11] Saleem GN, Gu R, Qu H, Bahar Khaskheli G, Rashid Rajput I, Qasim M, et al. Therapeutic potential of popular fermented dairy products and its benefits on human health. Front Nutr 2024;11:1328620. https://doi.org/10.3389/fnut.2024.1328620.

[12] Balthazar CF, Santillo A, Guimarães JT, Capozzi V, Russo P, Caroprese M, et al. Novel milk–juice beverage with fermented sheep milk and strawberry (Fragaria × ananassa): Nutritional and functional characterization. J Dairy Sci 2019;102:10724–36. https://doi.org/10.3168/jds.2019-16909.

[13] Damián MR, Cortes-Perez NG, Quintana ET, Ortiz-Moreno A, Garfias Noguez C, Cruceño-Casarrubias CE, et al. Functional Foods, Nutraceuticals and Probiotics: A Focus on Human Health. Microorganisms 2022;10:1065. https://doi.org/10.3390/microorganisms10051065.

[14] Mazlum H, Atasever M. Probiotic cheese as a functional food. Asian-Australas J Food Saf Secur 2023;7:20–32. https://doi.org/10.3329/aajfss.v7i1.65482.

[15] Arora S, Prabha K, Sharanagat VS, Mishra V. Consumer awareness and willingness to purchase probiotic food and beverage products: a study of Sonipat district, Haryana. Br Food J 2021;123:2805–17. https://doi.org/10.1108/BFJ-06-2020-0469.

[16] Céspedes M, Cárdenas P, Staffolani M, Ciappini MC, Vinderola G. Performance in Nondairy Drinks of Probiotic L. casei Strains Usually Employed in Dairy Products. J Food Sci 2013;78. https://doi.org/10.1111/1750-3841.12092.

[17] Chaudhari A, Gurjar MD, Kamani KC, Prajapati MC, Makwana AK. A Study of Awareness and Student’s Buying Behaviour towards Probiotic Dairy Products at Anand City, India. J Sci Res Rep 2024;30:66–72. https://doi.org/10.9734/jsrr/2024/v30i82225.

[18] Aspri M, Papademas P, Tsaltas D. Review on Non-Dairy Probiotics and Their Use in Non-Dairy Based Products. Fermentation 2020;6:30. https://doi.org/10.3390/fermentation6010030.

[19] Min M, Bunt C, Mason S, Bennett G, Hussain M. Effect of Non-Dairy Food Matrices on the Survival of Probiotic Bacteria during Storage. Microorganisms 2017;5:43. https://doi.org/10.3390/microorganisms5030043.

[20] Samedi L, Charles AL. Functional Activity of Four Autochthonous Strains L. paraplantarum AB362736.1, L. plantarum MF369875.1, W. paramesenteroides CP023501.1, and E. faecalis HQ802261.1 in a Probiotic Grape Marmalade during Storage. Antioxidants 2019;8:165. https://doi.org/10.3390/antiox8060165.

[21] Clark BE, Pope L, Belarmino EH. Personal bias in nutrition advice: A survey of healthcare professionals’ recommendations regarding dairy and plant-based dairy alternatives 2021. https://doi.org/10.1101/2021.07.20.21260856.

[22] Clegg ME, Tarrado Ribes A, Reynolds R, Kliem K, Stergiadis S. A comparative assessment of the nutritional composition of dairy and plant-based dairy alternatives available for sale in the UK and the implications for consumers’ dietary intakes. Food Res Int 2021;148:110586. https://doi.org/10.1016/j.foodres.2021.110586.

[23] Granato D, Barba FJ, Bursać Kovačević D, Lorenzo JM, Cruz AG, Putnik P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu Rev Food Sci Technol 2020;11:93–118. https://doi.org/10.1146/annurev-food-032519-051708.

[24] Hassoun A, Bekhit AE-D, Jambrak AR, Regenstein JM, Chemat F, Morton JD, et al. The fourth industrial revolution in the food industry—part II: Emerging food trends. Crit Rev Food Sci Nutr 2024;64:407–37. https://doi.org/10.1080/10408398.2022.2106472.

[25] Comunian TA, Silva MP, Souza CJF. The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends Food Sci Technol 2021;108:269–80. https://doi.org/10.1016/j.tifs.2021.01.003.

[26] Alongi M, Anese M. Re-thinking functional food development through a holistic approach. J Funct Foods 2021;81:104466. https://doi.org/10.1016/j.jff.2021.104466.

[27] Alais C. Ciencia de la leche. Reverte; 2022.

[28] Villamil RA, Robelto GE, Mendoza MC, Guzmán MP, Cortés LY, Méndez CA, et al. Desarrollo de productos lácteos funcionales y sus implicaciones en la salud: Una revisión de literatura. Rev Chil Nutr 2020;47:1018–28. https://doi.org/10.4067/S0717-75182020000601018.

[29] Kelava Ugarković N, Petrović I, Prpić Z, Vnučec I, Konjačić M. Seasonal changes in diet affect fatty acid composition of Jersey milk in organic production system. J Cent Eur Agric 2022;23:267–73. https://doi.org/10.5513/JCEA01/23.2.3502.

[30] Khastayeva AZ, Zhamurova VS, Mamayeva LA, Kozhabergenov AT, Karimov NZ, Muratbekova KM. Qualitative indicators of milk of Simmental and Holstein cows in different seasons of lactation. Vet World 2021;14:956–63. https://doi.org/10.14202/vetworld.2021.956-963.

[31] Magan JB, O′Callaghan TF, Kelly AL, McCarthy NA. Compositional and functional properties of milk and dairy products derived from cows fed pasture or concentrate‐based diets. Compr Rev Food Sci Food Saf 2021;20:2769–800. https://doi.org/10.1111/1541-4337.12751.

[32] Tumino S, Criscione A, Moltisanti V, Marletta D, Bordonaro S, Avondo M, et al. Feeding System Resizes the Effects of DGAT1 Polymorphism on Milk Traits and Fatty Acids Composition in Modicana Cows. Animals 2021;11:1616. https://doi.org/10.3390/ani11061616.

[33] Tumino S, Bognanno M, Chessari G, Tolone M, Bordonaro S, Mangano F, et al. Polymorphisms at Candidate Genes for Fat Content and Fatty Acids Composition: Effects on Sheep Milk Production and Fatty Acid Profile Using Two Dietary Supplementations. Animals 2023;13:2533. https://doi.org/10.3390/ani13152533.

[34] Collard KM, McCormick DP. A Nutritional Comparison of Cow’s Milk and Alternative Milk Products. Acad Pediatr 2021;21:1067–9. https://doi.org/10.1016/j.acap.2020.12.007.

[35] Kilic-Akyilmaz M, Ozer B, Bulat T, Topcu A. Effect of heat treatment on micronutrients, fatty acids and some bioactive components of milk. Int Dairy J 2022;126:105231. https://doi.org/10.1016/j.idairyj.2021.105231.

[36] Campo Banguero LM, Ramírez Navas JS. Capacidad antioxidante en helados y derivados lácteos. Rev Colomb Investig Agroindustriales 2021;8:23–41.

[37] Levin S. Dairy Products and Bone Health. J Am Diet Assoc 2007;107:35. https://doi.org/10.1016/j.jada.2006.11.037.

[38] Visioli F, Strata A. Milk, Dairy Products, and Their Functional Effects in Humans: A Narrative Review of Recent Evidence. Adv Nutr 2014;5:131–43. https://doi.org/10.3945/an.113.005025.

[39] García-Burgos M, Moreno-Fernández J, Alférez MJM, Díaz-Castro J, López-Aliaga I. New perspectives in fermented dairy products and their health relevance. J Funct Foods 2020;72:104059. https://doi.org/10.1016/j.jff.2020.104059.

[40] Yiğit A, Bielska P, Cais-Sokolińska D, Samur G. Whey proteins as a functional food: Health effects, functional properties, and applications in food. J Am Nutr Assoc 2023;42:758–68. https://doi.org/10.1080/27697061.2023.2169208.

[41] Anjana, Tiwari SK. Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the Gut Microbiota. Front Cell Infect Microbiol 2022;12:851140. https://doi.org/10.3389/fcimb.2022.851140.

[42] Aslam H, Marx W, Rocks T, Loughman A, Chandrasekaran V, Ruusunen A, et al. The effects of dairy and dairy derivatives on the gut microbiota: a systematic literature review. Gut Microbes 2020;12:1799533. https://doi.org/10.1080/19490976.2020.1799533.

[43] Wang X, Zhang P, Zhang X. Probiotics Regulate Gut Microbiota: An Effective Method to Improve Immunity. Molecules 2021;26:6076. https://doi.org/10.3390/molecules26196076.

[44] Chen E, Ajami NJ, White DL, Liu Y, Gurwara S, Hoffman K, et al. Dairy Consumption and the Colonic Mucosa-Associated Gut Microbiota in Humans—A Preliminary Investigation. Nutrients 2025;17:567. https://doi.org/10.3390/nu17030567.

[45] Haghshenas B, Nami Y, Almasi A, Abdullah N, Radiah D, Rosli R, et al. Isolation and characterization of probiotics from dairies. Iran J Microbiol 2017;9:234–43.

[46] Pan Z, Ma T, Steele M, Guan LL. Varied microbial community assembly and specialization patterns driven by early life microbiome perturbation and modulation in young ruminants. ISME Commun 2024;4:ycae044. https://doi.org/10.1093/ismeco/ycae044.

[47] Illikoud N, Mantel M, Rolli-Derkinderen M, Gagnaire V, Jan G. Dairy starters and fermented dairy products modulate gut mucosal immunity. Immunol Lett 2022;251–252:91–102. https://doi.org/10.1016/j.imlet.2022.11.002.

[48] Dahiya D, Nigam PS. Nutrition and Health through the Use of Probiotic Strains in Fermentation to Produce Non-Dairy Functional Beverage Products Supporting Gut Microbiota. Foods 2022;11:2760. https://doi.org/10.3390/foods11182760.

[49] Goderska K, Dombhare K, Radziejewska-Kubzdela E. Probiotics in Vegetable Juices : Tomato (Solanum Lycopersicum), Carrot(Daucus Carota, Subsp. Sativus) and Beetroot Juice (Beta Vulgaris) 2021. https://doi.org/10.21203/rs.3.rs-907042/v1.

[50] Hariwal A. Isolation, Screening And Characterization Of Dairy Isolated Probiotics. Afr J Biol Sci 2024;6:3474–88. https://doi.org/10.48047/AFJBS.6.Si4.2024.3474-3488.

[51] Su ACY, Ding X, Lau HCH, Kang X, Li Q, Wang X, et al. Lactococcus lactis HkyuLL 10 suppresses colorectal tumourigenesis and restores gut microbiota through its generated alpha-mannosidase. Gut 2024;73:1478–88. https://doi.org/10.1136/gutjnl-2023-330835.

[52] Elshaghabee F. Probiotics in Dairy Foods: Advantages and Disadvantages. Egypt J Agric Sci 2023;74:1–18. https://doi.org/10.21608/ejarc.2023.304665.

[53] Kaur H, Gupta T, Kapila S, Kapila R. Role of fermented dairy foods in human health. Indian J Dairy Sci 2020;73:97–110. https://doi.org/10.33785/IJDS.2020.v73i02.001.

[54] Lee H-J, Ham D-W, Seo S-H, Cha G-H, Shin E-H. Probiotic-induced changes in intestinal microbiome inhibits Toxoplasma gondii infection. Parasites Hosts Dis 2024;62:408–23. https://doi.org/10.3347/PHD.24068.

[55] Luo M, Yan J, Wu L, Wu J, Chen Z, Jiang J, et al. Probiotics Alleviated Nonalcoholic Fatty Liver Disease in High-Fat Diet-Fed Rats via Gut Microbiota/FXR/FGF15 Signaling Pathway. J Immunol Res 2021;2021:1–10. https://doi.org/10.1155/2021/2264737.

[56] Mohamad Nor MH, Ayob N, Mokhtar NM, Raja Ali RA, Tan GC, Wong Z, et al. The Effect of Probiotics (MCP® BCMC® Strains) on Hepatic Steatosis, Small Intestinal Mucosal Immune Function, and Intestinal Barrier in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients 2021;13:3192. https://doi.org/10.3390/nu13093192.

[57] Li S-J, So J-S. In Vitro Characterization of Cell Surface Properties of 14 Vaginal Lactobacillus Strains as Potential Probiotics. Adv Microbiol 2021;11:144–55. https://doi.org/10.4236/aim.2021.112010.

[58] Tropcheva R, Georgieva R, Paskov V, Karsheva M, Danova S. Sensory Properties of B ulgarian Yogurts, Supplemented with Lactobacilli as Probiotic Adjuncts. J Texture Stud 2014;45:187–94. https://doi.org/10.1111/jtxs.12065.

[59] Wang J, Lang T, Shen J, Dai J, Tian L, Wang X. Core Gut Bacteria Analysis of Healthy Mice. Front Microbiol 2019;10:887. https://doi.org/10.3389/fmicb.2019.00887.

[60] Lerner A, Matthias T, Aminov R. Potential Effects of Horizontal Gene Exchange in the Human Gut. Front Immunol 2017;8:1630. https://doi.org/10.3389/fimmu.2017.01630.

[61] Pereira J, Simões M, Silva JL. Microalgal assimilation of vitamin B ₁₂ toward the production of a superfood. J Food Biochem 2019;43. https://doi.org/10.1111/jfbc.12911.

[62] Brunser O. Avances en el conocimiento de las proteínas de la leche materna. Rev Chil Pediatría 2018;89:261–9. https://doi.org/10.4067/S0370-41062018000200261.

[63] Azad MdAK, Sarker M, Li T, Yin J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Res Int 2018;2018:1–8. https://doi.org/10.1155/2018/9478630.

[64] Campos DCDS, Neves LTBC, Flach A, Mendes JKS, Souza BOD, Silva ADN. Contagem de microrganismos probióticos em leites fermentados adicionados de açaí e camu-camu. In: Silva TMD, Deus CD, editors. Probióticos Viabilidade E Saúde. 1st ed., Canoas, RS, Brazil: Mérida Publishers; 2022. https://doi.org/10.4322/mp.978-65-84548-09-1.c3.

[65] Aguayo VM, Ross J, Saunero R, Tórrez A, Johnston R. Valor monetario de la leche materna en Bolivia. Rev Panam Salud Pública 2001;10:249–56. https://doi.org/10.1590/S1020-49892001001000005.

[66] Moraes ALFD, Bueno RGAL, Fuentes-Rojas M, Antunes AEC. Suplementação com probióticos e depressão: estratégia terapêutica? Rev Ciênc Médicas 2019;28:31. https://doi.org/10.24220/2318-0897v28n1a4455.

[67] Quevedo DM, Ochoa JE, Corredor JR, Pulecio SL. Efectos de la adición de probiótico Saccharomyces cerevisiae sobre histomorfología intestinal en pollos de engorde. Rev Fac Med Vet Zootec 2021;67:239–52. https://doi.org/10.15446/rfmvz.v67n3.93931.

[68] Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014;11:506–14. https://doi.org/10.1038/nrgastro.2014.66.

[69] Pachekrepapol U, Somboonchai N, Krimjai W. Physicochemical, rheological, and microbiological properties of lactose‐free functional yogurt supplemented with fructooligosaccharides. J Food Process Preserv 2021;45. https://doi.org/10.1111/jfpp.15017.

[70] Slavin J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013;5:1417–35. https://doi.org/10.3390/nu5041417.

[71] Delgado-Fernández P, Hernández-Hernández O, Olano A, Moreno FJ, Corzo N. Probiotic viability in yoghurts containing oligosaccharides derived from lactulose (OsLu) during fermentation and cold storage. Int Dairy J 2020;102:104621. https://doi.org/10.1016/j.idairyj.2019.104621.

[72] Liao W, Su M, Zhang D. A study on the effect of symbiotic fermented milk products on human gastrointestinal health: Double‐blind randomized controlled clinical trial. Food Sci Nutr 2022;10:2947–55. https://doi.org/10.1002/fsn3.2890.

[73] Rosa MC, Carmo MRS, Balthazar CF, Guimarães JT, Esmerino EA, Freitas MQ, et al. Dairy products with prebiotics: An overview of the health benefits, technological and sensory properties. Int Dairy J 2021;117:105009. https://doi.org/10.1016/j.idairyj.2021.105009.

[74] Coronado M, Vega Y León S, Gutiérrez T R, Vázquez F M, Radilla V C. Antioxidantes: perspectiva actual para la salud humana. Rev Chil Nutr 2015;42:206–12. https://doi.org/10.4067/S0717-75182015000200014.

[75] Cardoso MAP, Carvalho VM, Ribas JCR, Saraiva BR, Anjo FA. Implicações nutricionais e tecnológicas da inclusão de antioxidantes em produtos lácteos. Res Soc Dev 2021;10:e11101320866. https://doi.org/10.33448/rsd-v10i13.20866.

[76] Mejía-Doria CM, Orozco-Parra J, Hernando IM, Rodriguez-Barona S. Impregnación a Vacío de Matrices de Cidra con Pulpa de Lulo, Inulina y Calcio para Potenciar sus Características Funcionales. Inf Tecnológica 2019;30:211–8. https://doi.org/10.4067/S0718-07642019000300211.

[77] Ochoa Ospina CI, Sepúlveda Valencia JU, Universidad Nacional de Colombia, Sede Medellín, Maldonado ME, Universidad de Antioquia, Zapata Acosta K, et al. Propiedades antioxidantes de extractos de curuba (Passiflora mollisima Bailey) en crema de leche. Perspect En Nutr Humana 2014;16. https://doi.org/10.17533/udea.penh.v16n2a06.

[78] Narayanan S, Pitchumoni CS. Dietary Fiber. In: Pitchumoni CS, Dharmarajan TS, editors. Geriatr. Gastroenterol., Cham: Springer International Publishing; 2020, p. 1–16. https://doi.org/10.1007/978-3-319-90761-1_27-1.

[79] Alanís-García E, González-Rubio PY, Delgado-Olivares L, Cruz-Cansino NDS. Fibra dietética: historia, definición y efectos en la salud. Educ Salud Bol Científico Inst Cienc Salud Univ Autónoma Estado Hidalgo 2021;9:187–95. https://doi.org/10.29057/icsa.v9i18.6604.

[80] Ambuja SR, Rajakumar SN. Review On “Dietary Fiber Incorporated Dairy Foods: A Healthy Trend.” J Eng Res Appl 2018;8:34–40. https://doi.org/10.9790/9622-0802033440.

[81] Brañes MC, Gillet R, Valenzuela R. Efficacy of Submicron Dispersible Free Phytosterols on Non-Alcoholic Fatty Liver Disease: A Pilot Study. J Clin Med 2023;12:979. https://doi.org/10.3390/jcm12030979.

[82] Gillet R, Cerda-Drago TG, Brañes MC, Valenzuela R. Submicron Dispersions of Phytosterols Reverse Liver Steatosis with Higher Efficacy than Phytosterol Esters in a Diet Induced-Fatty Liver Murine Model. Int J Mol Sci 2025;26:564. https://doi.org/10.3390/ijms26020564.

[83] Poudel A, Gachumi G, Paterson PG, El-Aneed A, Badea I. Liposomal Phytosterols as LDL-Cholesterol-Lowering Agents in Diet-Induced Hyperlipidemia. Mol Pharm 2023;20:4443–52. https://doi.org/10.1021/acs.molpharmaceut.2c01072.

[84] Cicero AFG, Fogacci F, Giovannini M, Rizzoli E, Grandi E, D’Addato S, et al. The Effect of Dietary Supplementation with Plant Sterols on Total and LDL-Cholesterol in Plasma Is Affected by Adherence to Mediterranean Diet: Insights from the DESCO Randomized Clinical Study. Nutrients 2023;15:4555. https://doi.org/10.3390/nu15214555.

[85] Song L, Zhao XG, Ouyang PL, Guan Q, Yang L, Peng F, et al. Combined effect of n -3 fatty acids and phytosterol esters on alleviating hepatic steatosis in non-alcoholic fatty liver disease subjects: a double-blind placebo-controlled clinical trial. Br J Nutr 2020;123:1148–58. https://doi.org/10.1017/S0007114520000495.

[86] Frasinariu O, Serban R, Trandafir LM, Miron I, Starcea M, Vasiliu I, et al. The Role of Phytosterols in Nonalcoholic Fatty Liver Disease. Nutrients 2022;14:2187. https://doi.org/10.3390/nu14112187.

[87] Nattagh‐Eshtivani E, Barghchi H, Pahlavani N, Barati M, Amiri Y, Fadel A, et al. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytother Res 2022;36:299–322. https://doi.org/10.1002/ptr.7312.

[88] Yang Y, Xia J, Yu T, Wan S, Zhou Y, Sun G. Effects of phytosterols on cardiovascular risk factors: A systematic review and meta‐analysis of randomized controlled trials. Phytother Res 2025;39:3–24. https://doi.org/10.1002/ptr.8308.

[89] Alagawany M, Elnesr SS, Farag MR, El-Sabrout K, Alqaisi O, Dawood MAO, et al. Nutritional significance and health benefits of omega-3, -6 and -9 fatty acids in animals. Anim Biotechnol 2022;33:1678–90. https://doi.org/10.1080/10495398.2020.1869562.

[90] Nguyen QV, Malau-Aduli BS, Cavalieri J, Nichols PD, Malau-Aduli AEO. Enhancing Omega-3 Long-Chain Polyunsaturated Fatty Acid Content of Dairy-Derived Foods for Human Consumption. Nutrients 2019;11:743. https://doi.org/10.3390/nu11040743.

[91] Kim T-B, Lee J-S, Cho S-Y, Lee H-G. In Vitro and In Vivo Studies of Rumen-Protected Microencapsulated Supplement Comprising Linseed Oil, Vitamin E, Rosemary Extract, and Hydrogenated Palm Oil on Rumen Fermentation, Physiological Profile, Milk Yield, and Milk Composition in Dairy Cows. Animals 2020;10:1631. https://doi.org/10.3390/ani10091631.

[92] Savatinova M, Ivanova M. Functional dairy products enriched with omega-3 fatty acids. Food Sci Appl Biotechnol 2024;7:1. https://doi.org/10.30721/fsab2024.v7.i1.301.

[93] Cheng M, Zhang S, Ning C, Huo Q. Omega-3 Fatty Acids Supplementation Improve Nutritional Status and Inflammatory Response in Patients With Lung Cancer: A Randomized Clinical Trial. Front Nutr 2021;8:686752. https://doi.org/10.3389/fnut.2021.686752.

[94] Qin J, Kurt E, LBassi T, Sa L, Xie D. Biotechnological production of omega-3 fatty acids: current status and future perspectives. Front Microbiol 2023;14:1280296. https://doi.org/10.3389/fmicb.2023.1280296.

[95] Urrutia O, Mendizabal JA, Alfonso L, Soret B, Insausti K, Arana A. Adipose Tissue Modification through Feeding Strategies and Their Implication on Adipogenesis and Adipose Tissue Metabolism in Ruminants. Int J Mol Sci 2020;21:3183. https://doi.org/10.3390/ijms21093183.

[96] Damodaran S, Parkin KL, editors. Fennema’s food chemistry. Fifth edition. Boca Raton: CRC Press; 2017.

[97] Cianferotti L, Bifolco G, Caffarelli C, Mazziotti G, Migliaccio S, Napoli N, et al. Nutrition, Vitamin D, and Calcium in Elderly Patients before and after a Hip Fracture and Their Impact on the Musculoskeletal System: A Narrative Review. Nutrients 2024;16:1773. https://doi.org/10.3390/nu16111773.

[98] McCourt AF, Mulrooney SL, O’Neill GJ, O’Riordan ED, O’Sullivan AM. Postprandial 25-hydroxyvitamin D response varies according to the lipid composition of a vitamin D3 fortified dairy drink. Int J Food Sci Nutr 2022;73:396–406. https://doi.org/10.1080/09637486.2021.1984400.

[99] Morato-Martínez M, López-Plaza B, Santurino C, Palma-Milla S, Gómez-Candela C. A Dairy Product to Reconstitute Enriched with Bioactive Nutrients Stops Bone Loss in High-Risk Menopausal Women without Pharmacological Treatment. Nutrients 2020;12:2203. https://doi.org/10.3390/nu12082203.

[100] Cormick G, Betran A, Romero I, Cormick M, Belizán J, Bardach A, et al. Effect of Calcium Fortified Foods on Health Outcomes: A Systematic Review and Meta-Analysis. Nutrients 2021;13:316. https://doi.org/10.3390/nu13020316.

[101] Rizzoli R. Dairy products and bone health. Aging Clin Exp Res 2021;34:9–24. https://doi.org/10.1007/s40520-021-01970-4.

[102] Ansari S, Mohammadifard N, Hajihashemi P, Haghighatdoost F, Zarepur E, Mahmoudi S, et al. The relationship between fermented and nonfermented dairy products consumption and hypertension among premature coronary artery disease patients: Iran premature coronary artery disease study. Food Sci Nutr 2024;12:3322–35. https://doi.org/10.1002/fsn3.3998.

[103] Dalabasmaz S, de la Torre EP, Gensberger-Reigl S, Pischetsrieder M, Rodríguez-Ortega MJ. Identification of Potential Bioactive Peptides in Sheep Milk Kefir through Peptidomic Analysis at Different Fermentation Times. Foods 2023;12:2974. https://doi.org/10.3390/foods12152974.

[104] Wang Y, Liang Z, Shen F, Zhou W, Manaer T, Jiaerken D, et al. Exploring the immunomodulatory effects and mechanisms of Xinjiang fermented camel milk-derived bioactive peptides based on network pharmacology and molecular docking. Front Pharmacol 2023;13:1038812. https://doi.org/10.3389/fphar.2022.1038812.

[105] Kusumaningtyas E, Ermayati E, Suherman S, Endrawati D, Ahmad RZ. Antifungal Activity of Peptide Fractions from Goat, Mare and Soybean Milk to Candida albicans and Trichophyton mentagrophytes. In: Nurlaila I, Ulfa Y, Anastasia H, Putro G, Rachmalina R, Ika Agustiya R, et al., editors. Proc. 1st Int. Conf. Health Res. – BRIN ICHR 2022, Dordrecht: Atlantis Press International BV; 2023, p. 21–8. https://doi.org/10.2991/978-94-6463-112-8_3.

[106] Xie Y, Li M, Zhang S. Identification of peptides from protease‐fermented milk protein and immunomodulatory effect in vivo against lipopolysaccharide‐induced inflammation. Int J Food Sci Technol 2022;57:6503–11. https://doi.org/10.1111/ijfs.15989.

[107] García-Curiel L, Berenice O-RL, Elizabeth C-GA, Emmanuel P-E, Pérez-Flores JG, Guillermo G-OL. DPP-IV Inhibitory Peptides From Whey Proteins: Production, Functional Mechanisms, Bibliometric Insights, and Future Directions for Type 2 Diabetes Therapy. Pept Sci 2025;117:e70000. https://doi.org/10.1002/pep2.70000.

[108] Li J, Cui H, Xu X, Li J, Lu M, Yu Y, et al. Effects of pectic fat mimetics and transglutaminase on the regularity of protein and fat degradation and flavour compounds in Cheddar cheese during ripening. Int J Food Sci Technol 2022;57:1291–302. https://doi.org/10.1111/ijfs.15519.

[109] Khan A, Nadeem M, Imran M, Gulzar N, Ahmad MH, Tayyab M, et al. Impact of safflower oil derived conjugated linoleic acid supplementation on fatty acids profile, lipolysis and sensory properties of cheddar cheese. Int J Food Prop 2022;25:2223–36. https://doi.org/10.1080/10942912.2022.2130356.

[110] Nadeem M, Qureshi TM, Sarfraz S, Ur-Rehman S, Rehman A, Malik F, et al. Effect of Kinnow (Citrus nobilis × C. deliciosa) Peel Oil Coating on the Shelf Stability and Antioxidant Potential of Cheddar Cheese. J Food Qual 2023;2023:1–11. https://doi.org/10.1155/2023/6653063.

[111] Shafique B, Murtaza MA, Hafiz I, Ameer K, Basharat S, Mohamed Ahmed IA. Proteolysis and therapeutic potential of bioactive peptides derived from Cheddar cheese. Food Sci Nutr 2023;11:4948–63. https://doi.org/10.1002/fsn3.3501.

[112] Thøgersen R, Egsgaard KL, Kjølbæk L, Jensen KJ, Astrup A, Hammershøj M, et al. Effect of Dairy Matrix on the Postprandial Blood Metabolome. Nutrients 2021;13:4280. https://doi.org/10.3390/nu13124280.

[113] Dias SS, De Souza Vergílio D, Pereira AM, Klososki SJ, Marcolino VA, Da Cruz RMS, et al. Probiotic Greek yogurt: effect of the addition of prebiotic fat substitutes on the physicochemical characteristics, probiotic survival, and sensory acceptance. J Dairy Res 2021;88:98–104. https://doi.org/10.1017/S0022029921000121.

[114] Kazemeini H, Azizian A, Ahmadi K. Preparation of Synbiotic Yogurt Sauce Containing Spirulina platensis Microalgae Extract and Its Effect on the Viability of Lactobacillus acidophilus. BioMed Res Int 2023;2023:8434865. https://doi.org/10.1155/2023/8434865.

[115] Kim C, Yoon L, Michels K, Tranfield W, Jacobs J, May F. The Impact of Prebiotic, Probiotic, and Synbiotic Supplements and Yogurt Consumption on the Risk of Colorectal Neoplasia among Adults: A Systematic Review. Nutrients 2022;14:4937. https://doi.org/10.3390/nu14224937.

[116] Alamoudi SA, Saad AM, Alsubhi NH, Alrefaei GI, Al-Quwaie DA, Binothman N, et al. Upgrading the physiochemical and sensory quality of yogurt by incorporating polyphenol-enriched citrus pomaces with antioxidant, antimicrobial, and antitumor activities. Front Nutr 2022;9:999581. https://doi.org/10.3389/fnut.2022.999581.

[117] Mediantari Wahyu Wibawanti J, Mulyani S, Hartanto R, Ni’matullah Al-Baarri A, Budi Pramono Y, Mohamad Legowo A. The Characteristics of Goat Milk Synbiotics-Yogurt using Lactobacillus plantarum as Probiotic and Inulin of Mangrove Apple (Sonneratia caseolaris). Adv Anim Vet Sci 2022;10. https://doi.org/10.17582/journal.aavs/2022/10.11.2457.2463.

[118] Dimitrellou D, Sakadani E, Kandylis P. Enhancing Probiotic Viability in Yogurt: The Role of Apple Fibers in Supporting Lacticaseibacillus casei ATCC 393 During Storage and Gastrointestinal Transit. Foods 2025;14:376. https://doi.org/10.3390/foods14030376.

[119] Nami Y, Kiani A, Elieh‐Ali‐Komi D, Jafari M, Haghshenas B. Impacts of alginate–basil seed mucilage–prebiotic microencapsulation on the survival rate of the potential probiotic Leuconostoc mesenteroides ABRIINW . N18 in yogurt. Int J Dairy Technol 2023;76:138–48. https://doi.org/10.1111/1471-0307.12909.

[120] Ayaz R, Andiç S, Oğuz Ş. The effect of pine honey on the viability of probiotics and some properties of probiotic yogurt. J Hell Vet Med Soc 2024;75:8099–112. https://doi.org/10.12681/jhvms.37054.

[121] Inocente-Camones MA, Arias-Arroyo GC, Mauricio-Alza SM, Bravo-Araujo GT, Capcha-Siccha MF, Cabanillas-Alvitrez E. Polyphenols, carotenoids and flavonoids in an antioxidant probiotic yogurt made with tumbo pulp (Passiflora tripartita Kunth). Braz J Food Technol 2022;25:e2021175. https://doi.org/10.1590/1981-6723.17521.

[122] Sarwar A, Al-Dalali S, Aziz T, Yang Z, Ud Din J, Khan AA, et al. Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii CNCM I-745 in Combination with Inulin. J Fungi 2022;8:713. https://doi.org/10.3390/jof8070713.

[123] Cortellino G, Rizzolo A. Storage Stability of Novel Functional Drinks Based on Ricotta Cheese Whey and Fruit Juices. Beverages 2018;4:67. https://doi.org/10.3390/beverages4030067.

[124] Turova N, Stabrovskaya E, Vasilchenko N, Prosin M, Moiseev A. The use of functional food products for the prevention of vitamin deficiency in people with increased physical and neuropsychic stress on the example of firefighters-rescuers. E3S Web Conf 2021;273:13008. https://doi.org/10.1051/e3sconf/202127313008.

[125] Santos Espinosa A, Heredia Castro PY, Sosa Castañeda J, Aguilar Toalá JE. Antioxidant activity and sensory acceptability of whey protein-based smoothie beverages made from mango (Mangifera indica L.) cv Haden and strawberry (Fragaria x ananassa Duch.) cv Festival. Agro Product 2024. https://doi.org/10.32854/agrop.v17i2.2789.

[126] Vieira AH, Balthazar CF, Rocha RS, Silva R, Guimaraes JT, Pagani MM, et al. The free listing task for describing the sensory profiling of dairy foods: A case study with microfiltered goat whey orange juice beverage. J Sens Stud 2020;35:e12594. https://doi.org/10.1111/joss.12594.

[127] Detti C, Nascimento LBDS, Gori A, Vanti G, Amato G, Nazzaro F, et al. Addition of polyphenolic extracts of Myrtus communis and Arbutus unedo fruits to whey: valorization of a common dairy waste product as a functional food. J Sci Food Agric 2025;105:2559–68. https://doi.org/10.1002/jsfa.14029.

[128] Abitayeva G, Bissenova G, Mussabayeva B, Naimanov Y, Тultabayeva Т, Sarmurzina Z. Development, quality and safety evaluation of a probiotic whey beverage. Funct Foods Health Dis 2023;13:347. https://doi.org/10.31989/ffhd.v13i7.1121.

[129] Bulatović MLj, Krunić TŽ, Vukašinović-Sekulić MS, Zarić DB, Rakin MB. Quality attributes of a fermented whey-based beverage enriched with milk and a probiotic strain. RSC Adv 2014;4:55503–10. https://doi.org/10.1039/C4RA08905G.

[130] Rodríguez Basantes AI, Abad Basante CA, Pérez Martínez A, Diéguez Santana K. Elaboración de una bebida a base de suero lácteo y pulpa de Theobroma grandiflorum. Biotecnol En El Sect Agropecu Agroindustrial 2020;18:166. https://doi.org/10.18684/BSAA(18)166-175.

[131] Pescuma M, Hébert EM, Mozzi F, Font De Valdez G. Functional fermented whey-based beverage using lactic acid bacteria. Int J Food Microbiol 2010;141:73–81. https://doi.org/10.1016/j.ijfoodmicro.2010.04.011.

[132] Sampaio KB, De Albuquerque TMR, Rodrigues NPA, De Oliveira MEG, De Souza EL. Selection of Lactic Acid Bacteria with In Vitro Probiotic-Related Characteristics from the Cactus Pilosocereus gounellei (A. Weber ex. K. Schum.) Bly. ex Rowl. Foods 2021;10:2960. https://doi.org/10.3390/foods10122960.

[133] Yao M, Xie J, Du H, McClements DJ, Xiao H, Li L. Progress in microencapsulation of probiotics: A review. Compr Rev Food Sci Food Saf 2020;19:857–74. https://doi.org/10.1111/1541-4337.12532.

[134] Dharani Kumar M, Anupama M, Davuddin Baig M, Beena A, Rajakumar S. Development and characterisation of synbiotic whey beverage. Indian J Dairy Sci 2021;74:208–14. https://doi.org/10.33785/IJDS.2021.v74i03.003.

[135] Sharma NC, Bais B, Vyas J, Sharma A. Development and Sensory Evaluation of Aloevera and Coconut Water based Whey Beverages Prepared from Camel and Goat Milk. Asian J Dairy Food Res 2022. https://doi.org/10.18805/ajdfr.DR-1742.

[136] Herrera‐Ponce AL, Salmeron‐Ochoa I, Rodriguez‐Figueroa JC, Santellano‐Estrada E, Garcia‐Galicia IA, Vargas‐Bello‐Pérez E, et al. Functional properties and consumer acceptance of whey‐oat beverages under different ultrasonication times and inulin concentration. J Food Process Preserv 2022;46. https://doi.org/10.1111/jfpp.16907.

Descargas

Publicado

2025-09-05

Cómo citar

Rosales-Arellano, A. D., Pérez-Flores, J. G., García Curiel, L., Cruz-Guerrero, A. E., Contreras-López, E., & González-Olivares, L. G. (2025). Leche funcional: revisión de formulación, bioactividad y aceptación sensorial. Boletín De Ciencias Agropecuarias Del ICAP, 12(Especial), 44–60. https://doi.org/10.29057/icap.v12iEspecial.15307

Número

Sección

Artículos