Efecto de la modificación química dual en la actividad antioxidante del complejo almidón-quercetina
DOI:
https://doi.org/10.29057/icap.v12iEspecial.15420Palabras clave:
Modificación dual, Almidón, PolifenolResumen
El almidón, ampliamente utilizado en la industria alimentaria, tiene limitaciones que pueden superarse mediante modificaciones físicas, enzimáticas y químicas. El objetivo de ésta investigación fue evaluar la modificación dual del almidón de malanga para mejorar su funcionalidad y capacidad de estabilizar la quercetina. Se realizó una coprecipitación de almidón de malanga modificado químicamente y quercetina para realizar un. Se evaluó la capacidad antioxidante mediante pruebas de eliminación de radicales libres (DPPH). Los resultados muestran que el almidón sin modificación presentó una mayor actividad antioxidante que los modificados, lo que sugiere que las modificaciones pueden mejorar la estabilidad y biodisponibilidad de la quercetina. Se propone explorar procesos más sostenibles y efectivos para potenciar las propiedades de estos complejos y evaluar las interacciones moleculares involucradas.
Descargas
Citas
[1] Abedi E, Pourmohammadi K, Jahromi M, Niakousari M, Torri L. The effect of ultrasonic probe sizefor effective ultrasound-assisted pregelatinized starch. Food and Bioprocess Technology 2019; 12:1852–1862. DOI:10.1007/s11947-019-02347-2
[2] Aguilera JM. The food matrix: implications in processing, nutrition and health. Critical Reviews in Food Science and Nutrition 2019; 59(22):3612–3629. https://doi.org/10.1080/10408398.2018.1502743
[3] Amagliani L, O’Regan J, Kelly AL, ’Mahony JA. Chemistry, structure, functionality and applications of rice starch. Journal of Cereal Science 2016; 70:291–300. https://doi.org/10.1016/j.jcs.2016.06.014
[4] Amoako DB, Awika JM. Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose. Food Chemistry 2019; 285:326–333. https://doi.org/10.1016/j.foodchem.2019.01.173
[5] Basilio-Cortes UA, Gonzalez-Cruz L, Velazquez G, Teniente-Martinez G, Gomez-Aldapa CA, Castro-Rosas J, Bernardino-Nicanor AC. Effect of dual modification on the spectroscopic, calorimetric, viscosimetric and morphological characteristics of corn starch. Polymers (MDPI) 2019; 11:333. DOI:10.3390/polym 1102033
[6] Bello-Perez LA, Flores-Silva PC, Agama-Acevedo E, Tovar J. Starch digestibility: past, present, and future. Journal of the Science of Food and Agriculture 2020; 100(14):5009–5016. https://doi.org/10.1002/jsfa.8955
[7] Benavent-Gil Y, Rosell CM. Comparison of porous starches obtained from different enzyme types and levels. Carbohydrate Polymers 2016; 157:533-540. DOI:https://doi.org/10.1016/j.carbpol.2016.10.047
[8] Benavent-Gil Y, Rosell CM. Morphological and physicochemical characterization of porous starches obtained from different botanical sources and amylolytic enzymes. International Journal of Biological Macromolecules 2017; 101:587-595.
[9] Benavent-Gil Y, Rodrigo D, Rosell CM. Thermal stabilization of probiotics by adsorption onto porous starches. Carbohydrate Polymers 2018; 197:558-564.
[10] Beninca C, de Oliveira CS, Bet CD, Bisinella B, Gaglieri C, Schnitzler E. Effect of ball milling treatment on thermal, structural and morphological properties of phosphate starches from corn and pinhao. Starch 2019; 72(3-4):1900233 DOI:https://doi.org/10.1002/star.201900233
[11] Chen J, Wang Y, Liu J, Xu X. Preparation, characterization, physicochemical property and potential application of porous starch: A review. International Journal of Biological Macromolecules 2020; 148:1169–1181. https://doi.org/10.1016/j.ijbiomac.2020.02.055
[12] Ch C., LiX., Lu P, Miao S. Zhang Y, Chen L. Dry heating and annealing treatment synergistically modulate starch structure and digestibility. International Journal of Biological Macromolecules 2019; 137:554-561.
[13] Cruz-Benítez MM, Gómez-Aldapa CA, Castro-Rosas J, Hernández-Hernández E, Gómez-Hernández E, Fonseca-Florido HA. Effect of amylose content and chemical modification of cassava starch on the microencapsulation of Lactobacillus pentosus. LWT 2019; 105:110–117. https://doi.org/10.1016/j.lwt.2019.01.069
[14] Dabeek WM, Marra MV. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 2019; 11(10):2288. https://doi.org/10.3390/nu11102288
[15] Das A, Sit N. Modification of Taro Starch and Starch Nanoparticles by Various Physical Methods and their Characterization. Starch 2021; 73(5–6):1–8. https://doi.org/10.1002/star.202000227
[16] Devi R, Sit N. Effect of single and dual steps annealing in combination with hydroxypropylation on physicochemical, functional and rheological properties of barley starch. International Journal of Biological Macromolecules 2019; 129:1006-1014.
[17] Dima C, Assadpour E, Dima S, Jafari SM. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Comprehensive Reviews in Food Science and Food Safety 2020; 19(3):954–994. https://doi.org/10.1111/1541-4337.12547
[18] Kumar DV, Verma PRP, Singh SK. Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT-Food Science and Technology 2015; 61(2):330–338. https://doi.org/10.1016/j.lwt.2014.12.020
[19] Du X, Hu M, Liu G, Qi B, Zhou S, Lu K, Xie F, Zhu X, Li Y. Development and evaluation of delivery systems for quercetin: A comparative study between coarse emulsion, nano-emulsion, high internal phase emulsion, and emulsion gel. Journal of Food Engineering 2022; 314: 110784. https://doi.org/10.1016/j.jfoodeng.2021.110784
[20] Haq F, Yu H, Wang L, Teng L, Haroon M, Khan RU. Advances in chemical modifications of starches and their applications. Carbohydrate Research 2019; 476:12-35.
[21] Hazarika BJ, Sit N. Effect of dual modification with hydroxypropylation and cross-linking of physicochemical properties of taro starch. Carbohydrate Polymers 2016; 40:269-278.
[22] He T, Wang K, Zhao L, Chen Y, Zhou W, Liu F, Hu Z. Interaction with longan seed polyphenols affects the structure and digestion properties of maize starch. Carbohydrate Polymers 2021; 256: 117537. https://doi.org/10.1016/j.carbpol.2020.117537
[23] He X Gong, X, Li W, Cao W, Yan J Guo R. Preparation and characterization of amphiphilic composites made with double-modified (etherified and esterified) potato starches. Starch 2019; 71(9-10): 1900089. DOI:https://doi.org/10.1002/star.201900089
[24] Hong J, Zeng X, Brennan CS, Brennan S, Han Z. Recent advances in techniques for starch esters and the applications: A review. Foods 2016; 5(3):50. https://doi.org/10.3390/foods5030050
[25] Hong Y, Liu G, Gu Z. Recent advances of starch-based excipients used in extended-release tablets: A review. Drug Delivery 2016; 23(1):12–20. https://doi.org/10.3109/10717544.2014.913324
[26] Mathobo VM, Silungwe H, Ramashina SE, Anyasi TS. Effects of heat-moisture treatment on the thermal, functional properties and composition of cereal, legume and tuber starches-a review. Journal of Food Science and Technology 2021; 58(2):412-426. DOI:10.1007/s13197-020-04520-4
[27] Mehfooz T, Ali TM, Hasnain A. Effect of cross-linking on characteristics of succinylated and oxidized barley starch. Journal of Food Measurement and Characterization 2019; 13:1058–1069. DOI: 10.1007/s11694-018-00021-3
[28] Nawaz H, Waheed R, Nawaz M, Shahwar D. Physical and chemical modifications in starch structure and reactivity. IntechOpen 2020. DOI:5772/interopen.88870
[29] Oh IK, Bae IY, Lee HC. Effect of dry heat treatment on physical property and in vitro starch digestibility of high amylose rice starch. International Journal of Biological Macromolecules 2018; 108:568-575.
[30] Rahaiee S, Assadpour E, Faridi-Esfanjani A, Silva AS, Jafari SM. Application of nano/microencapsulated phenolic compounds against cancer. Advances in Colloid and Interface Science 2020; 279:102153. https://doi.org/10.1016/j.cis.2020.102153
[31] Wattanachant S, Muhammad KMAT, Hashim DM, Rahman RA. Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties. Food Chemistry 2003;80(4):463-471.
[32] (Brand-Williams et al ., 1995
[33] Deng N, Deng Z, Tang C, Liu C, Luo S, Chen T, Hu X. Formation, structure and properties of the starch-polyphenol inclusion complex: A review. Trends in Food Science & Technology 2021; 112:667-675.
[34] Deng N, Deng Z, Tang C, Liu C, Luo S, Chen T, Hu X. Formation, structure and properties of the starch-polyphenol inclusion complex: A review. Trends in Food Science & Technology 2021; 112:667-675.
[35] Nan, et al ., 2021,
[36] Ngo TV, Kusumawardani S, Kunyanee K, Luangsakul N. Polyphenol-modified starches and their applications in the food industry: recent updates and future directions. Foods 2022; 11(21):3384.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Marco Antonio Estrada Jasso, Juan Pablo Hernández-Uribe, Víctor Hugo Paniagua-López, Gabriela Medina Pérez , Armando Zepeda Bastida, Luisa Monserrat García Vázquez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.