Thermodynamics of inclusion between chlorpropamide and α-cyclodextrin

Keywords: chlorpropamide, ITC, cyclodextrin, inclusion, complex, heat, capacity

Abstract

Chlorpropamide is an antidiabetic agent belonging to the sulfonylurea family, used for the treatment of Type 2 Diabetes Mellitus this drug has low solubility, which leads to bioavailability problems. One way to solve this complication is by using cyclodextrins, cyclodextrins are oligosaccharides that have a semi-rigid toroidal shape with a hydrophobic cavity, which is capable of containing non-polar molecules inside, forming an inclusion complex. Isothermal titration calorimetry is a technique that allows knowing the thermodynamic profile of the inclusion reaction between chlorpropamide and α-cyclodextrin (logK= 1.95 ± 0.01 M-1, ∆G0= −2.70 ± 0.005 kcal mol-1, ∆H0= −3.47 ± 0.06 kcal mol-1, −T∆S0= 0.763 ± 0.07 kcal mol-1), in the same way it allows reactions to be carried out at different temperatures, with which it is possible to determine the calorific capacity of the inclusion (∆CP0= −0.119 kcal mol-1 K-1). The results obtained show that the reaction is exothermic, spontaneous and that the interactions that predominate of hydrophobic nature.

Downloads

Download data is not yet available.

References

Barega Jalali, M., Dastmalchi, S., (2007). Kinetic analysis of chlorpropamide dissolution from solid dispersions. Drug development and industrial pharmacy. 63-70. DOI: 10.1080/03639040600762636

Boletín UNAM., (2021). En aumento, los casos de diabetes en México. Dirección General de Comunicación Social. https://www.dgcs.unam.mx/boletin/bdboletin/2021_966.html#:~:text=Seg%C3%BAn%20datos%20del%20INEGI%20(julio,214%20(13.9%20por%20ciento).

Bouchemal, K., Mazzaferro, S., (2012). How to conduct and Interpret ITC experiments accurately for cyclodextrin-guest interaction. Drug discovery today, 17(11), 623-629. DOI: 10.1016/j.drudis.2012.01.023

Emilien, G., Maloteaux, J. M., Ponchon, M., (1999). Pharmacological management of diabetes: Recent progress and future perspective in daily drug treatment. Pharmacology and therapeutics, 37-51. DOI:10.1016/s0163-7258(98)00034-5

Furman, B. L. (2016). Sulfonylureas. Module in biomedical sciences, 1-2.

Illakurthy, A. C., Wyandt, C. M., Stodghill, S. P., (2005). Isothermal titration calorimetry method for determination of cyclodextrin complezation thermodynamics between artemisinin and naproxen under varying environmental condition. European journal of pharmaceutics and biopharmaceutics, 325-332. DOI: 10.1016/j.ejpb.2004.08.006

Linderman, R. D., Syracuse, M. D., (1960). Severe hypoglycemia caused by chlorpropamide. Diabetes, 110-113.

Ojeda, R., (2020). Diabetes en México: así se comporta la segunda causa de muerte en el país. Milenio. https://www.milenio.com/ciencia-y-salud/diabetes-en-mexico-2020-estadisticas-y-porcentaje

OMS, (2020). Organización Mundial de la Salud: Temas de salud. https://www.who.int/topics/diabetes_mellitus/es/

Pallardo Sánchez, L. F., (2008). Sulfonilureas en el tratamiento del paciente con diabetes mellitus tipo 2. Endocrinología y nutrición, 17-25. DOI: 10.1016/S1575-0922(08)76259-4

Peraro, C. R., Aconi, A., & Aconi, C. P., (2018). Formation of beta-Cyclodextrin inclusion compound with doxycycline: A theoretical approach. Chemical phycics letters, 140-145. DOI: 10.1016/j.cplett.2017.12.024

Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Williams, R., (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes research and clinical practice, 1-10. DOI:10.1016/j.diabres.2019.107843

Sonoda, Y., Hirayama, F., Arima, H., & Uekama, K., (2004). Effects 2-hydroxypropyl-B-cyclodextrin on polymorphic transition of chlorpropamide in various conditions: temperature, humidity and moulding pressure. Journal of inclusion phenomena and macrocyclic chemistry, 73-77. DOI:10.1007/s10847-004-8842-8

Uekama, K., Hirayama, F., Nasu, S., Matsuo, N., & Irie, T., (1978). Determination of the stability constants for inclusion complexes of cyclodextrins with various drug molecules by high performance liquid chromatography. Chemical & pharmaceutical bulletin, 3477-3484. DOI:10.1248/cpb.26.3477

Xavier Júnior, F. H., Tavares, C. T., Rabello, M. M., Hernandes, M. Z., Bezerra, B. P., Ayala, A. P., & Pessoa, O. D., (2019). Elucidation of the mechanism of complexation between oncocalyxone A and cyclodextrins by isothermal titration calorimetry and molecular modeling. Journal of molecular liquids, 165-172. DOI:https:10.1016/j.molliq.2018.10.129

Published
2023-04-28
How to Cite
González-Barbosa, J., Hipólito-Nájera, A. R., Gómez-Balderas, R., Rodríguez-Laguna, N., & Moya-Hernández, R. (2023). Thermodynamics of inclusion between chlorpropamide and α-cyclodextrin. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial), 36-39. https://doi.org/10.29057/icbi.v11iEspecial.10228

Most read articles by the same author(s)