Improvement of a low-cost intelligent servomotor

Keywords: Advanced robots, robot control, real-time, low-cost intelligent servomotor

Abstract

In this article is described an improvement implemented to the Dynamixel AX-12 servo motor, a low-cost intelligent servo motor widely used in the design and construction of advanced robots for entertainment and research. The modification of its software and hardware is detailed in order to change its original communication protocol to SPI and with this to achieve higher data transmission speeds between servomotors of the same type and supervisory computer systems that operate in real time. Additionally, a PD controller with feedforward is programmed to regulate both the speed and the angular position of its load axis, with a sampling period of 1 [ms] (10 times greater than what was achieved with the original servomotor). Finally, the conclusions obtained regarding the satisfactory behavior of both the theoretical and the experimental are described.

Downloads

Download data is not yet available.

References

Arena, P., Patane, L., Spinosa, A. G. (2022). A new embodied motor-neuron arquitecture. IEEE Transactions on Control Systems Technology, 30:5, pp. 2212-2219.

Bestmann, M., Güldenstein, J., Zhang, J. (2019). High-Frequency Multi Bus Servo and Sensor Communication Using the Dynamixel Protocol. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, MA. (eds) RoboCup 2019: Robot World Cup XXIII. RoboCup 2019. Lecture Notes in Computer Science, vol 11531. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-35699-6_2

Bugarin, E., Castañeda-García, L. J., y Aguilar-Bustos, A. Y. (2014). Experimental analysis of the dynamixel ax 12 servomotor and its wireless communication. In Advances in computing science, control and communications, pp. 37–46. Springer-Verlag Berlin Heidelberg.

Fereidouni, S., Hassani, M. S., Talebi, A., Rezaie, A. H. (2022) A novel design and implementation of wheelchair navigation system using Leap Motion sensor, Disability and Rehabilitation: Assistive Technology, 17:4, 442-448, DOI: 10.1080/17483107.2020.1786734

Iqbal, J., Xu, R., Halloran, H., Li, C. (2020). Development of a Multi-Purpose Autonomous Differential Drive Mobile Robot for Plant Phenotyping and Soil Sensing. Electronics 2020, 9, 1550; doi:10.3390/electronics9091550

Kusnerova, M., Repka, M., Harnicarova, M., Valícek, J., Danel, R., Kmec, J., Palkova, Z. (2020). A new way of measuring the belt friction coefficient using a digital servomotor. Measurement. https://doi.org/10.1016/j.measurement.2019.107100

Oh Y., Kim J. H. (2021). System Design and Implementation of Multi-legged Spider Robots for Landmine Detection in the Demilitarized Zone. 2021 18th International Conference on Ubiquitous Robots (UR). Gangneung, Korea (South), pp. 228-234. DOI: 10.1109/UR52253.2021.9494703.

Sciavicco, L., Siciliano, B. (2009). Robotics: Modelling, Planning and Control. Springer-Verlag, London, 632 pp.

Shirai, K., Shimamura, K., Koubara, A., Shigaki, S., Fujisawa, R., (2022). Development of a behavioral trajectory measurement system (Bucket‑ANTAM) for organisms moving in a two‑dimensional plane. Artificial Life and Robotics (2022) 27:698–705. https://doi.org/10.1007/s10015-022-00811-5

Singh, R., Khurana, A. and Kumar, S. (2020). Optimized 3D laser point cloud reconstruction by gradient descent technique, Industrial Robot, Vol. 47 No. 3, pp. 409-421. DOI: https://doi.org/10.1108/IR-12-2019-0244

Smith, J. A. y Jivraj, J. (2010). Analysis of robotis dynamixel ax-12+ actuator latencies.

Thai, C. N. y Paulishen, M. (2011). Using robotis bioloid systems for instructional robotics. In 2011 Proceedings of IEEE Southeastcon, pp. 300–306. IEEE.

Tsai C. C., Hsu W. T., Tai F. C., Chen S. C. (2022). Adaptive Motion Control of a Terrain-Adaptive Self-Balancing Leg-Wheeled Mobile Robot over Rough Terrain. 2022 International Automatic Control Conference (CACS), Kaohsiung, Taiwan, pp. 1-6, DOI: 10.1109/CACS55319.2022.9969857.

Zilong, S., Gang, Z., Denis, E. (2015). Modelling and control of actuators with built-in position controller. IFAC Papers Online 48(11), pp. 837-842.

Zyhowski, W.P., Zill, S.N., Szczecinski, N.S. (2022). Load Feedback from a Dynamically Scaled Robotic Model of Carausius Morosus Middle Leg. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science, Springer.

Published
2023-09-11
How to Cite
Sánchez-García, B., Bugarin, E., & Aguilar-Bustos, A. Y. (2023). Improvement of a low-cost intelligent servomotor. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial2), 127-133. https://doi.org/10.29057/icbi.v11iEspecial2.10852