Portable system for plantar load analysis during walking

Keywords: Instrumented insoles, Plantar load, Gait cycle, Wireless communication, Multichannel system

Abstract

This paper describes the development of a portable system for measuring and analyzing plantar load during the performance of the human gait cycle. The system comprises 24 resistive force sensors distributed along a flexible insole. The base of the insole was manufactured by 3D printing techniques using thermoplastic polyurethane, also known as TPU, as a flexible filament manufacturing material. Subsequently, Smooth-On brand EcoflexTM 00-30 polymer was poured into the base to generate a soft filler on the surface that will be in contact with the user. The electronic instrumentation of the system includes an Arduino® Nano coupled to a set of model CD4051BE analog multiplexers used to acquire the 24 signals. Wireless communication based on XBee® devices was used to transmit the collected data to a graphical user interface on a personal computer; designed to acquire, process, visualize and store the plantar loading measurements. Finally, the system’s performance was validated by testing with healthy volunteers to record the plantar load measurements obtained during a gait cycle

Downloads

Download data is not yet available.

References

Abdul Razak, A. H., Zayegh, A., Begg, R. K., y Wahab, Y. (2012). Foot plantar pressure measurement system: A review. Sensors, 12(7):9884–9912.

Alharthi, A. S., Yunas, S. U., y Ozanyan, K. B. (2019). Deep learning for monitoring of human gait: A review. IEEE Sensors Journal, 19(21):9575–9591.

Alvarado-Rivera, D., Niño-Suárez, P. A., y Corona-Ramírez, L. G. (2022a). Semiactive knee orthotic using a mr damper and a smart insole to control the damping force sensing the plantar pressure. Frontiers in Neurorobotics, 16:64.

Alvarado-Rivera, D., Niño-Suárez, P. A., y Corona-Ramírez, L. G. (2022b). Wearable system for measuring vertical ground reaction forces during the gait cycle. En Congreso Nacional de Ingenier´ıa Biom´edica, pp. 468–476. Springer.

Assucena, A. M., Silvestre, J. P., Ruiz, M. S., y de Moya, M. P. (2005). Plantillas instrumentadas. utilidad clínica. Rehabilitación, 39(6):324–330.

Ávila, R., Prado, L., y González, E. (2007). Dimensiones antropométricas de la población latinoamericana: México, cuba, colombia, chile. Avila Chaurand, LR Prado León, EL González Muñoz. pdf (Segunda ed). Guadalajara, Jalisco: Universidad de Guadalajara.

Chen, W., Xu, Y., Wang, J., y Zhang, J. (2016). Kinematic analysis of human gait based on wearable sensor system for gait rehabilitation. Journal of Medical and Biological Engineering, 36:843–856.

Ciniglio, A., Guiotto, A., Spolaor, F., y Sawacha, Z. (2021). The design and simulation of a 16-sensors plantar pressure insole layout for different applications: From sports to clinics, a pilot study. Sensors, 21(4):1450.

Ellis, S. J., Stoecklein, H., Yu, J. C., Syrkin, G., Hillstrom, H., y Deland, J. T. (2011). The accuracy of an automasking algorithm in plantar pressure measurements. HSS Journal®, 7(1):57–63.

Fukuchi, C. A., Fukuchi, R. K., y Duarte, M. (2019). Effects of walking speed on gait biomechanics in healthy participants: a systematic review and metaanalysis. Systematic reviews, 8(1):1–11.

Gurney, J. K., Kersting, U. G., y Rosenbaum, D. (2008). Between-day reliability of repeated plantar pressure distribution measurements in a normal population. Gait & posture, 27(4):706–709.

Horsak, B., Dlapka, R., Iber, M., Gorgas, A.-M., Kiselka, A., Gradl, C., Siragy, T., y Doppler, J. (2016). SONIGait: a wireless instrumented insole device for real-time sonification of gait. Journal on Multimodal User Interfaces, 10:195–206.

Negi, S., Sharma, S., y Sharma, N. (2021). Fsr and imu sensors-based human gait phase detection and its correlation with emg signal for different terrain walk. Sensor Review, 41(3):235–245.

NinjaTek (2016). Cheetah™ 3D Printing Filament. Technical report. OHMITE (2020). FSR Series Force Sensing Resistor. Technical report.

Paton, J., Jones, R. B., Stenhouse, E., y Bruce, G. (2007). The physical characteristics of materials used in the manufacture of orthoses for patients with diabetes. Foot & ankle international, 28(10):1057–1063.

Pineda-Gutiérrez, J., Miró-Amarante, L., Hernández-Velázquez, M., Sivianes-Castillo, F., y Domínguez-Morales, M. (2019). Designing a wearable device for step analyzing. En 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), pp. 259–262. IEEE.

Ramirez-Bautista, J. A., Huerta-Ruelas, J. A., Chaparro-Cárdenas, S. L., y Hernández-Zavala, A. (2017). A review in detection and monitoring gait disorders using in-shoe plantar measurement systems. IEEE reviews in biomedical engineering, 10:299–309.

Sánchez, M. R. (2004). PODOLOGÍA. Los desequilibrios del pie (Color). Editorial Paidotribo.

SMOOTH-ON (2021). Ecoflex™ 00-30 Product Information — Smooth-On, Inc. Technical report.

Strelchenya, K., Chertenko, L., y Garkavenko, S. (2016). Research of parameters of formation of a trace of a block. Technology and design, (2).

Tekscan (2018). The F-Scan In-shoe system. Technical report.

Texas Instruments Incorporated (2017). CD405xB CMOS Single 8-Channel Analog Multiplexer/Demultiplexer with Logic-Level Conversion. Technical report.

Wafai, L., Zayegh, A., Woulfe, J., Aziz, S. M., y Begg, R. (2015). Identification of foot pathologies based on plantar pressure asymmetry. Sensors, 15(8):20392–20408.

Wang, L., Jones, D., Chapman, G. J., Siddle, H. J., Russell, D. A., Alazmani, A., y Culmer, P. (2019). A review of wearable sensor systems to monitor plantar loading in the assessment of diabetic foot ulcers. IEEE Transactions on Biomedical Engineering, 67(7):1989–2004.

Published
2023-11-30
How to Cite
Alegria-Palacios, M., Alvarado-Sánchez, C., Ballesteros-Escamilla, M. F., & Cruz-Ortiz, D. (2023). Portable system for plantar load analysis during walking. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial4), 80-87. https://doi.org/10.29057/icbi.v11iEspecial4.11407