Design and development of compact bipolar pulsed electrochemical micro-machining station

Keywords: Micro machining, Computer System, control, electrochemical machining

Abstract

Flexible or advanced manufacturing and specifically the bipolar pulsed electrochemical machining process offers the advantage of being able to machine any conductive metallic material being indifferent to its hardness or composition, however, controlling this process has become a challenge due to the lack of techniques of control or specialized machinery to incorporate this process on a micrometric scale, this article shows the design, development and testing of a compact bipolar pulsed electrochemical micro machining station that allows entering micro machining incorporating electrochemical machining As well as its various variants, the materials used for its manufacture have the necessary characteristics to resist corrosion and wear caused by the electrolytes used, the secondary systems incorporated such as the decantation filtration system and the pneumatic air injection system. They allow to prolong the useful life of the process itself, added to the minimum resolution of 10μm provided by the mechanical system, making this technological innovation a unique piece of its kind.

Downloads

Download data is not yet available.

References

Bhattacharyya, B. (2015). Electrochemical Micromachining for nanofabrication. Elsevier, 25-52. doi:10.1016/b978-0-323-32737-4.00002-5

Catarino Aguilar , O. (2017). Sistema asistido por computadora para la remoción controlada de material en un procesos de Maquinado Electroquímico. México: Universidad Autonoma del Estado de México, Atlacomulco.

Fang, X., Qu, N., & Zhang, Y. (2014). Effects of pulsating electrolyte flow in electrochemical machining. Journal of Materials Processing Technology(214), 36-43.

Grover P., M. (2010). Fundamentos de Manufactura Moderna (4° ed.). México: Mc GrawHill.

Guixian , L., Zhang, Y., & Natsu, W. (2019). Influence of electrolyte flow mode on characteristics of electrochemical machining with electrolyte suction tool . International Journal of Machine Tools and Manufacture.

Hassan, A., & Gawad , E.-H. (2005). Advanced Machining Processes. Alexandria: McGraw-Hill.

He, H. D., Qu, N. S., Zeng, Y. B., & Tong, P. Z. (2017). Improvement of Hydrogen Bubbles Detaching from the Tool Surface in Micro Wire Electrochemical Machining by Applying Surface Microstructures. Journal of The Electrochemical Society(164), 248-259.

Inman, M., & Taylor, j. (2011). Estados Unidos Patente nº WO2011/156301A1.

Kalpakjian, S., & Schmid, S. (2008). Manufactura, Ingeniería Y Tecnología. (5° ed.). Pearson.

Katz, Z., & Tibbles, C. (2010). Analysis of micro-scale ECM Process. Journal of Advance Manufacturing Technology, 35, 923-928.

Martinez Alvarado , R., Granda Gutierrez , E. E., Zuñiga, L. M., & Guerrero , R. (2015). Pulsed Power Supply for Electrochemical Machining. 2015 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 3(15), 1-6.

Nagata , M., & Wacabayashi, K. (2000). japon Patente nº 1999347888.

Ronnei, M., & Murali, S. (2012). Modeling and fabrication of micro tools by pulsed electrochemical machining. Journal of materials Processing Technology, 1567-1572. doi:https://doi.org/10.1016/j.jmatprotec.2012.03.004

Shimasaki, T., & Kunieda, M. (2016). Study on influences of bubbles on ECM gap phenomena using transparent electrode. CIRP Annals - Manufacturing Technology(65), 225-228.

Zdeblick, W., Zheng, Y., Bischof, K., & Liang, J. (2007). Mexico Patente nº MX20070110336A.

Published
2024-04-12
How to Cite
Catarino-Aguilar, O., Granda-Gutiérrez, E. E., & Pérez Martínez , J. A. (2024). Design and development of compact bipolar pulsed electrochemical micro-machining station. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial), 34-41. https://doi.org/10.29057/icbi.v12iEspecial.12182

Most read articles by the same author(s)