Trajectory tracking for an anthropomorphic manipulator robot using APF's

Keywords: Attractive Potential Fields, Gradient Descent, Trajectory Tracking, Anthropomorphic Robot Manipulator, Matlab/Simulink

Abstract

This paper presents a control algorithm applying the theory of attractive potential fields (APF's) to achieve trajectory tracking in an anthropomorphic manipulator robot with three degrees of freedom. An APF together with its gradient descent is proposed to solve the problem. The theoretical results are validated numerically in Matlab/Simulink using different trajectories to corroborate the stability of the algorithm.

Downloads

Download data is not yet available.

References

Andueza, L., & Aguirre, I. (2008). Diseño de un Manipulador Robótico con Tres Grados de Libertad para fines educativos. Ciencia e Ingeniería, 30(1), 3-13.

Badawy, A. (2014, April). Manipulator trajectory planning using artificial potential field. In 2014 International Conference on Engineering and Technology (ICET) (pp. 1-6). IEEE.

Cheng, T. T., Ma, F., & Wu, Q. (2017, August). An artificial potential field-based simulation approach for maritime traffic flow. In 2017 4th International Conference on Transportation Information and Safety (ICTIS) (pp. 384-389). IEEE.

Chen, Z., Ma, L., & Shao, Z. (2019, November). Path planning for obstacle avoidance of manipulators based on improved artificial potential field. In 2019 Chinese Automation Congress (CAC) (pp. 2991-2996). IEEE.

Colorado, R. M. (2016). Cinemática y dinámica de robots manipuladores. Alpha Editorial.

Cortés, F. R. (2020). Robótica: control de robots manipuladores. Marcombo.

Craig, J. J. (2006). Introduction to robotics. Pearson Educacion.

Dang, A. D., & Horn, J. (2015, May). Collinear formation control of autonomous robots to move towards a target using artificial force fields. In 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1-6). IEEE.

Fernández, A., & Marrero-Osorio, S. A. (2017). Modelos cinemático y dinámico de un robot de cuatro grados de libertad. Ingeniería Electrónica, Automática y Comunicaciones, 38(3), 56-75.

González-Sierra, J., Santiaguillo-Salinas, J., & Aranda-Bricaire, E. (2016, November). Reciprocal collision avoidance for a group of second order agents. In 2016 XVIII Congreso Mexicano de Robotica (pp. 1-5). IEEE.

Guan, W., Weng, Z., & Zhang, J. (2015, May). Obstacle avoidance path planning for manipulator based on variable-step artificial potential method. In The 27th Chinese Control and Decision Conference (2015 CCDC) (pp. 4325-4329). IEEE.

Jia, Q., & Wang, X. (2010, May). An improved potential field method for path planning. In 2010 Chinese Control and Decision Conference (pp. 2265-2270). IEEE.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The international journal of robotics research, 5(1), 90-98.

Lechuca-Gutiérrez, L. R., & Domínguez-Ramírez, O. A. (2022). Cinematica inversa basada en gradiente descendente cuaterniónico para cadenas. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 10(Especial5), 131-139.

Ramírez-López, L. A., & Martínez-Aragón, M. (2022). Seguimiento de trayectorias mediante cinemática diferencial aplicado en robots manipuladores. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 10(Especial6), 86-90.

Shahzad, A., Gao, X., Yasin, A., Javed, K., & Anwar, S. M. (2020). A vision-based path planning and object tracking framework for 6-DOF robotic manipulator. IEEE Access, 8, 203158-203167.

Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2020). Robot modeling and control. John Wiley & Sons.

Vergara-Hernández, R., Magaña-Méndez, M. A., Ramos-Fernández, J. C., & Hernández-Cortés, T. (2023). Análisis cinemático utilizando cuaterniones duales. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI.

Yang, M., Jiang, Y., & Sun, J. (2017, July). Research on trajectory planning of manipulator based on GA-APF algorithm. In 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER) (pp. 210-215). IEEE.

Published
2024-04-22
How to Cite
Flores-Murcia, Z., Lara-Solís, D. Y., Santiaguillo-Salinas, J., & Aranda-Bricaire, E. (2024). Trajectory tracking for an anthropomorphic manipulator robot using APF’s. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial2), 80-85. https://doi.org/10.29057/icbi.v12iEspecial2.12270