Experimental platform for the modeling and control of omnidirectional robots

Keywords: Omnidirectional robot, ADRC, ESO, ROS

Abstract

In this paper, an experimental platform for the development of robotics, control, and learning algorithms is presented. The proposed ROS architecture is open, allowing the integration of different sensors, processing units, and robots. An Active Disturbance Rejection Control (ADRC) is designed for an omnidirectional mobile robot to validate the proposed platform. Parametric uncertainties, wheel friction on the surface, and external disturbances are lumped as a total disturbance, estimated by an Extended State Observer (ESO), and compensated via a feedforward term in the control law. The omnidirectional robot can communicate through ROS with a motion capture system (server). Simulation and experimental results in real-time are presented. The control algorithm is lightweight and easy to implement and adjust in embedded systems with low computational resources or low-cost processors.

Downloads

Download data is not yet available.

References

Bihlmaier, A. y Wörn, H. (2016). Hands-on Learning of ROS Using Common Hardware, pp. 29–50. Springer International Publishing, Cham.

Campion, G., d’Andrea Novel, B., y Bastin, G. (1996). Structural properties and clasification on kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation.

Cousins, S., Gerkey, B., y Conley, K. (2010). Sharing software with ros. Robotics Automation Magazine, IEEE.

Curiel-Olivares, G., Linares-Flores, J., Guerrero-Castellanos, J., y Hernandez-Mendez, A. (2021). Self-balancing based on active disturbance rejection controller for the two-in-wheeled electric vehicle, experimental results. Mechatronics, 76:102552.

Galli, M., Barber, R., Garrido, S., y Moreno, L. (2017). Path planning using matlab-ros integration applied to mobile robots.

Gao, X., Li, J., Fan, L., Zhou, Q., Yin, K., Wang, J., Song, C., Huang, L., y Wang, Z. (2018). Review of wheeled mobile robots’ navigation problemsand application prospects in agriculture. IEEE Access, 6:49248–49268.

Gentilini, L., Rossi, S., Mengoli, D., Eusebi, A., y Marconi, L. (2021). Trajectory planning ros service for an autonomous agricultural robot. En 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), pp. 384–389.

Guerrero-Castellanos, J., Rifaï, H., Arnez-Paniagua, V., Linares-Flores, J., Saynes-Torres, L., y Mohammed, S. (2018). Robust active disturbance rejection control via control lyapunov functions: Application to actuatedankle–foot-orthosis. Control Engineering Practice, 80:49 – 60.

Guerrero-Castellanos, J., Villarreal Cervantes, M., Sanchez Santana, J., y Ramírez Martínez, S. (2014). Seguimiento de trayectorias de un robot móvil (3,0) mediante control acotado. Revista Iberoamericana de Automática e Informática industrial, 11(4):426–434.

Haghighat, M. R. y Sadeghnejad, S. (2022). Simulation of a two-wheeled selfbalancing wheelchair using ros-gazebo. En 2022 10th RSI International Conference on Robotics and Mechatronics (ICRoM), pp. 95–101.

Hu, K., Gu, C., y Chen, J. (2022). Ltrack: A lora-based indoor tracking system for mobile robots. IEEE Transactions on Vehicular Technology, 71(4):4264–4276.

Lee, D., Kang, G., Kim, B., y Shim, D. H. (2021). Assistive delivery robot application for real-world postal services. IEEE Access, 9:141981–141998.

Martin, J., Ansuategi, A., Maurtua, I., Gutierrez, A., Obregón, D., Casquero, O., y Marcos, M. (2021). A generic ros-based control architecture for pest inspection and treatment in greenhouses using a mobile manipulator. IEEE Access, 9:94981–94995.

Misēikis, J., Caroni, P., Duchamp, P., Gasser, A., Marko, R., Misēikiené, N., Zwilling, F., de Castelbajac, C., Eicher, L., Fruh, M., y Früh, H. (2020). Lio-a personal robot assistant for human-robot interaction and care applications. IEEE Robotics and Automation Letters, 5(4):5339–5346.

Niroui, F., Zhang, K., Kashino, Z., y Nejat, G. (2019). Deep reinforcement learning robot for search and rescue applications: Exploration in unknown cluttered environments. IEEE Robotics and Automation Letters, 4(2):610–617.

Pak, J., Kim, J., Park, Y., y Son, H. I. (2022). Field evaluation of path-planning algorithms for autonomous mobile robot in smart farms. IEEE Access, 10:60253–60266.

Parada-Salado, J. G., Ortega-Garcia, L. E., Ayala-Ramirez, L. F., Perez-Pinal, F. J., Herrera-Ramirez, C. A., y Padilla-Medina, J. A. (2018). A low-cost land wheeled autonomous mini-robot for in-door surveillance. IEEE Latin America Transactions, 16(5):1298–1305.

Quigey, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., y Ng, A. (2009). Ros: an open-source robot operating system. En ICRA Workshop on Open Source Software.

Wang, D., Leung, H., Kurian, A. P., Kim, H.-J., y Yoon, H. (2010). A deconvolutive neural network for speech classification with applications to home service robot. IEEE Transactions on Instrumentation and Measurement, 59(12):3237–3243.

Published
2024-04-22
How to Cite
Leal-Ramos, L. Y., Jonguitud-Indalecio, L. A., Ortíz-Michimani, M., Díaz-Téllez, J., Sánchez-Santana, J. P., & Guerrero-Castellanos, osé F. (2024). Experimental platform for the modeling and control of omnidirectional robots. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial2), 93-99. https://doi.org/10.29057/icbi.v12iEspecial2.12282