Speed control of a sphere robot with inertial locomotion

Keywords: sphere Robot, pendulum, Euler Lagrange

Abstract

This work presents the speed control of a sphere robot with BCO architecture, based on its transfer function. The controller is developed by analyzing the root locus (LGR) of the closed-loop (LC) transfer function. The proposed controller is evaluated in both linear and nonlinear models. Numerical simulations are executed with the Matlab-Simulink software to evaluate the performance of the controller, demonstrating the viability to be implemented in both models. Finally, the control torque necessary for the selection of the robot actuators is shown.

Downloads

Download data is not yet available.

References

Azizi, M. R. y Keighobadi, J. (2016). Robust sliding mode trajectory tracking controller for a nonholonomic spherical mobile robot. IFAC Proceedings Volumes, 47(3):4541–4546.

Bujnák, M., Pirník, R., Rástocný, K., Janota, A., Nemec, D., Kuchár, P., Tichý, T., y Lukasik, Z. (2022). Spherical robots for special purposes: A review on current possibilities. Sensors, 22(4):1413.

Chase, R. and Pandya, A. (2012). A review of active mechanical driving principles of spherical robots. Robotics, 1(1):3–23.

Chen, J., Ye, P., Sun, H., y Jia, Q. (2016). Design and motion control of a spherical robot with control moment gyroscope. In Fei, X., Wang, L., Ji, C., Sun, Q., Chen, N., Song, X., andWang, X., editors, 3rd International Conference on Systems and Informatics, ICSAI 2016, Shanghai, China, November 19-21, 2016, pages 114–120. IEEE.

Dewi, T., Risma, P., Oktarina, Y., Prasetyani, L., y Mulya, Z. (2019). The kinematics and dynamics motion analysis of a spherical robot. Proceeding of the Electrical Engineering Computer Science and Informatics, 6(0):101–105.

Firlej, S. (2015). Design, construction and control of a spherical rolling robot with internal two-wheel cart. Automatyka/Automatics, 19(2):63.

Herrera-Cordero, M. y Arias-Montiel, M. (2023). Obtención y linealización del modelado dinámico de un robot esfera con movimiento omnidireccional en el plano. In Reyes-Mora, S., Vázquez-Hipólito, V., and Barragán- Mendoza, F., editors, Modelación Matemática V: Ingeniería, Ciencias Naturales y Ciencias Sociales, Capitulo 3, pages 39–54. Universidad Tecnológica de la Mixteca, Oaxaca, México.

Huang, S.-J. y Huang, C.-L. (2000). Control of an inverted pendulum using grey prediction model. IEEE Transactions on Industry Applications, 36(2):452–458.

Kayacan, E., Kayacan, E., Ramon, H., y Saeys, W. (2012). Velocity control of a spherical rolling robot using a grey-pid type fuzzy controller with an adaptive step size. IFAC Proceedings Volumes, 45(22):863–868.

LI, W. y ZHAN, Q. (2018). Kinematics-based four-state trajectory tracking control of a spherical mobile robot driven by a 2-dof pendulum. Chinese Journal of Aeronautics, 32(6):1530–1540.

Manriquez-Silva, I. F., Escalera-Sierra, D., Maya-Gress, K. F., y Villafuerte- Segura, R. (2023). Plataforma subactuada para la enseñanza-aprendizaje de la teoría de control. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 11:157–170.

Moazami, S., Zargarzadeh, H., y Palanki, S. (2019). Kinematics of spherical robots rolling over 3d terrains. Complexity, 2019:14. Id/No 7543969.

Published
2024-04-22
How to Cite
Herrera-Cordero, M. E., & Arias-Montiel, M. (2024). Speed control of a sphere robot with inertial locomotion. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial2), 100-107. https://doi.org/10.29057/icbi.v12iEspecial2.12284