Effect of osmotic and convective dehydration on the physicochemical, functional and sensory properties of Opuntia joconostle

Keywords: Xoconostle, osmotic dehydration, sensory characterization, rapid profile

Abstract

The aim of this research was to analyze the physicochemical, functional and sensory changes generated during the dehydration of xoconostle in order to evaluate its potential as a conservation method for this fruit. A combined dehydration method (osmotic and convective) was applied at two temperatures (40 and 60 ° C). Maltodextrin 60 ° Bx, maltodextrin-sodium chloride 55:5% and sucrose-sodium chloride 55:5% were used as osmotic agents. For sensory characterization, the Rapid Profile method was applied using 10 semi-trained sensory judges. Compared with fresh xoconostle, none of the samples showed statistically significant difference in polyphenol content. The sucrose and sodium chloride osmotic solution demonstrated feasibility in the dehydration of xoconostle at 40 ° C due to the fact that it preserves the functional properties of the fruit and provides acceptable sensory characteristics for consumption.

Downloads

Download data is not yet available.

References

A.O.A.C., (1996). Official Methods of Analysis. Association of Official Analytical chemist. E.U.A.

A.O.A.C., (2000). Official Methods of Analysis. Association of Official Analytical chemist. E.U.A.

A.O.A.C., (2012). Official Methods of Analysis. Association of Official Analytical chemist. E.U.A.

Ahmed, I., Qazi, I. M., Jamal, S., (2016). Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science and Emerging Technologies, 34, 29–43. DOI: 10.1016/j.ifset.2016.01.003

Badui, S., (2013). La ciencia de los alimentos en la práctica. Journal of Chemical Information and Modeling (Cuarta., Vol. 53). México: PEARSON EDUCACIÓN. DOI: 10.1017/CBO9781107415324.004

Barbosa, G., Vega, H., (2000). Introducción a la deshidratación de alimentos. Deshidratación de alimentos (pp. 1–6).

Cano-Lamadrid, M., Lech, K., Michalska, A., Wasilewska, M., Figiel, A., Wojdyło, A., Carbonell-Barrachina, Á. A., (2017). Influence of osmotic dehydration pre-treatment and combined drying method on physico-chemical and sensory properties of pomegranate arils, cultivar Mollar de Elche. Food Chemistry, 232(October 2019), 306–315. DOI: 10.1016/j.foodchem.2017.04.033

Castañeda, J., Arteaga, H., Siche, R., Rodriguez, G., (2010). Comparative study of the loss of vitamin C in chalarina ( Casimiroa edulis ) by four methods of dehydration. Scientia Agropecuaria, 1, 75–80.

Cornejo, V., (2010). Deshidratación de rebanadas de aguacate variedad Hass por el método OSMO-VAC ( osmótico-vacío ) y evaluación de la calidad del producto. Escuela Nacional de Ciencias Biológicas Instituto Politecnico Nacional.

Dehlholm, C., Brockhoff, P. B., Meinert, L., Aaslyng, M. D., Bredie, W. L. P., (2012). Rapid descriptive sensory methods - Comparison of Free Multiple Sorting, Partial Napping, Napping, Flash Profiling and conventional profiling. Food Quality and Preference, 26(2), 267–277. DOI: 10.1016/j.foodqual.2012.02.012

González de la Rosa, L., Campos-Montiel, R. G., Pinedo-Espinoza, J. M., Hernández-Fuentes, A., (2016). Comportamiento poscosecha del fruto de xoconostle Ulapa, (Opuntia oligacantha C. F. Först) por efecto de corte e índices de madurez. Boletín de Ciencias Agropecuarias del ICAP, 2(3 SE-Artículos). DOI: 10.29057/icap.v2i3.996

Gorostiola, H., (2015). Efecto del secado por aspersión en la actividad hipoglucemiante de jugo de Xoconostle (Opuntia joconostle). INSTITUTO POLITÉCNICO NACIONAL.

Guzmán-Maldonado, S. H., Morales-Montelongo, A. L., Mondragón-Jacobo, C., Herrera-Hernández, G., Guevara-Lara, F., Reynoso-Camacho, R., (2010). Physicochemical, nutritional, and functional characterization of fruits xoconostle (opuntia matudae) pears from central-México Region. Journal of Food Science, 75(6). DOI: 10.1111/j.1750-3841.2010.01679.x

Hernández-Fuentes, A. D., Trapala-Islas, A., Gallegos-Vásquez, C., Campos-Montiel, R. G., Pinedo-Espinoza, J. M., Guzmán-Maldonado, S. H., (2015). Physicochemical variability and nutritional and functional characteristics of xoconostles ( Opuntia spp.) accessions from Mexico . Fruits, 70(2), 109–116. DOI: 10.1051/fruits/2015002

Khan, M. R., (2012). Osmotic dehydration technique for fruits preservation-A review. Pakistan Journal of Food Sciences, 22(2), 71–85.

Liu, J., Bredie, W. L. P., Sherman, E., Harbertson, J. F., Heymann, H., (2018). Comparison of rapid descriptive sensory methodologies: Free-Choice Profiling, Flash Profile and modified Flash Profile. Food Research International, 106, 892–900. DOI: https://doi.org/10.1016/j.foodres.2018.01.062

Mohammed, S., Edna, M., Siraj, K., (2020). The effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of fruits: A case of mangoes and pineapples. Heliyon, 6(6), e04163. DOI: 10.1016/j.heliyon.2020.e04163

Monroy-Gutiérrez, T., Martínez-Damián, M. T., Barrientos-Priego, A. F., Gallegos-Vázquez, C., Rodríguez-Pérez, J. E., Colinas-León, M. T. B., (2017). Evaluation of some physical and chemical characteristics of fruits of xocotuna, tuna and xoconostle in postharvest. Revista Mexicana de Ciencias Agrícolas, 8(1), 189. DOI: 10.29312/remexca.v8i1.82

Morales, A., (2009). Caracterización fitoquímica funcional del fruto de xoconostle cuaresmeño (Opuntia matudae) y el efecto de su consumo en parámetros bioquímicos de ratas diabéticas. Universidad Autónoma de Querétaro.

Morales, P., Barros, L., Ramírez-Moreno, E., Santos-Buelga, Ferreira, I. C. F. R. F. R., Santos-Buelga, C., Ferreira, I. C. F. R. F. R., et al., (2014). Exploring xoconostle by-products as sources of bioactive compounds. Food Research International, 65(PC), 437–444. DOI: https://doi.org/10.1016/j.foodres.2014.05.067

Morales, P., Ramírez-Moreno, E., Sanchez-Mata, M. de C., Carvalho, A. M., Ferreira, I. C. F. R., Sánchez-Mata, M. de C., Carvalho, A. M., et al., (2012). Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia joconostle F.A.C. Weber ex Diguet and Opuntia matudae Scheinvar) of high consumption in Mexico. Food Research International, 46(1), 279–285. Elsevier Ltd. DOI: 10.1016/j.foodres.2011.12.031

Osorio, O. E., Ortiz Moreno, A., Álvarez, V., Dorantes Álvarez, L., Giusti, M. M., (2011). Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Research International, 44(7), 2160–2168. DOI: 10.1016/j.foodres.2011.02.011

Pattanapa, K., Therdthai, N., Chantrapornchai, W., Zhou, W., (2010). Effect of sucrose and glycerol mixtures in the osmotic solution on characteristics of osmotically dehydrated mandarin cv. (Sai-Namphaung). International Journal of Food Science & Technology, 45(9), 1918–1924. DOI: 10.1111/j.1365-2621.2010.02353.x

Phisut, N., (2012). Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal, 19(1), 7–18.

Proteggente, A. R., Pannala, A. S., Paganga, G., van Buren, L., Wagner, E., Wiseman, S., van de Put, F., et al., (2002). The Antioxidant Activity of Regularly Consumed Fruit and Vegetables Reflects their Phenolic and Vitamin C Composition. Free Radical Research, 36(2), 217–233. Taylor & Francis. DOI: 10.1080/10715760290006484

Rodriguez-Saona, L. E., Wrolstad, R. E., (2001). Extraction , Isolation , and Purification of Anthocyanins. Current Protocols in Food Analytical Chemistry, F1.1.1-F1.1.11. DOI: 10.1007/978-1-61779-624-1

SIAP, (2018). Boletín mensual de producción Maíz grano.

da Silva, W. P., e Silva, C. M. D. P. S., Lins, M. A. A., Gomes, J. P., (2014). Osmotic dehydration of pineapple (Ananas comosus) pieces in cubical shape described by diffusion models. Food Science and Technology, 55(1), 1–8. DOI: https://doi.org/10.1016/j.lwt.2013.08.016

Sutar, P. P., Raghavan, G. V. S., Gariepy, Y., Prasad, S., Trivedi, A., (2012). Optimization of Osmotic Dehydration of Potato Cubes Under Pulsed Microwave Vacuum Environment in Ternary Solution. Drying Technology, 30(13), 1449–1456. DOI: 10.1080/07373937.2012.688909

Szadzinska, J., Kowalski, S. J., Stasiak, M., (2016). Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. International Journal of Heat and Mass Transfer, 103, 1065–1074. DOI: 10.1016/j.ijheatmasstransfer.2016.08.001

Tadesse, T., Abera, S., Worku, S., (2015). Nutritional and Sensory Properties of Solar-Dried Carrot Slices as Affected by Blanching and Osmotic Pre-Treatments. International Journal of Food Science and Nutrition Engineering, 5(1), 24–32. DOI: 10.5923/j.food.20150501.04

Tepper, P., (1996). Transferencia de masa durante la deshidratacion osmótica de palta cv Fuerte. Universidad de Chile.

Torres-Bojórquez, A. E., García-Rubio, O. R., Miranda-López, R., Cardador-Martínez, A., (2017). Evaluación de la capacidad antioxidante, características fisicoquímicas y perfil sensorial de Opuntia robusta y O. ficus-indica. Archivos Latinoamericanos de Nutrición, 67, 291–299.

Tortoe, C., (2010). A review of osmodehydration for food industry. African Journal of Food Science, 4(6), 303–324.

Varela, P., Ares, G., (2012). Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Research International, 48(2), 893–908. DOI: 10.1016/j.foodres.2012.06.037

Published
2021-07-05
How to Cite
Gutiérrez-Salomón, A. L., Hernández-Hernández, H. M., & Jaimez-Ordaz, J. (2021). Effect of osmotic and convective dehydration on the physicochemical, functional and sensory properties of Opuntia joconostle. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(17), 31-38. https://doi.org/10.29057/icbi.v9i17.6339