Adaptive control for an unmanned aerial vehicle under payload variation with precision agriculture applications

Keywords: Payload variation, Unmanned aerial vehicle, Adaptive backstepping control, Hovering, Numerical simulation

Abstract

This paper presents a model reference adaptive control for a quadrotor under payload variations, in this way, drone's mass and moments of inertia are considered uncertain parameters in its dynamics. The control design considers the analysis of the underactuated model of the drone dynamics, which can be decomposed into three independent subsystems. For each subsystem a reference model is proposed and using the Lyapunov formalism, a feedback control law is obtained in order to stabilize the vehicle together with an adaptation rule that adjusts the uncertain parameters online. This results in a backstepping control scheme with adaptive capabilities. The stability analysis also guarantees the convergence of the states of each subsystem to those of its corresponding reference model. To evaluate the performance of the proposed controller, numerical simulations were developed in MATLAB Simulink.

Downloads

Download data is not yet available.

References

Ajmera, J. and Sankaranarayanan, V. (2016). Point-to-point control of a quadrotor: Theory and experiment. IFAC PapersOnLine. 4th IFAC Conference on Advances in Control and Optimization of Dynamical Systems ACODS 2016.

Alatorre, A., Espinoza, E. S., S´ánchez, B., Ordaz, P., Mu˜noz, F., and Garc´ıa Carrillo, L. R. (2021). Parameter estimation and control of an unmanned aircraft-based transportation system for variable-mass payloads. Asian Journal of Control.

Antonelli, G., Cataldi, E., Arrichiello, F., Robuffo Giordano, P., Chiaverini, S., and Franchi, A. (2018). Adaptive trajectory tracking for quadrotor mavs in presence of parameter uncertainties and external disturbances. IEEE Transactions on Control Systems Technology, 26(1):248–254.

Åstr¨om, K. andWittenmark, B. (2013). Adaptive Control: Second Edition. Dover Publications.

Cervantes-Rojas, J. S., Mu˜noz, F., Chairez, I., Gonz´alez-Hern´andez, I., and Salazar, S. (2020). Adaptive tracking control of an unmanned aerial system based on a dynamic neural-fuzzy disturbance estimator. ISA transactions, 101:309–326.

Garc´ıa, L. R., Dzul, A., Lozano, R., and P´egard, C. (2012). Quad Rotorcraft Control Vision-Based Hovering and Navigation. Springer-Verlag London.

Gonz´alez, A., Amarillo, G., Amarillo, M., and Sarmiento, F. (2016). Drones aplicados a la agricultura de precisi´on. Publicaciones e Investigaci´on, 10:23–37.

Gonz´alez, F., Afanador, M., and Ni˜no, E. (2018). Modelamiento y simulaci´on de unquadrotor mediante la integrac´on de simulink y solidworks. MASKAY.

Gupte, S., Mohandas, P., and Conrad, J. M. (2012). A survey of quadrotor unmannedaerial vehicles. Proceedings of IEEE Southeastcon.

Huang, M., Xian, B., Diao, C., Yang, K., and Feng, Y. (2010). Adaptive tracking control of underactuated quadrotor unmanned aerial vehicles via backstepping. In Proceedings of the 2010 American Control Conference, pages 2076–2081.

Khamseh, H. B., Janabi-Sharifi, F., and Abdessameud, A. (2018). Aerial manipulation- a literature survey. Robotics and Autonomous Systems.

Krstic, M., Kanellakopoulos, I., and Kokotovic, P. V. (1995). Nonlinear and adaptive control design. Wiley.

Kusznir, T. and Smoczek, J. (2020). Sliding mode-based control of a uav quadrotor for suppressing the cable suspended payload vibration. Journal of Control Scienceand Engineering.

Liu, Z., Liu, X., Chen, J., and Fang, C. (2019). Altitude control for variable load quadrotor via learning rate based robust sliding mode controller. IEEE Access, 7:9736–9744.

Senkul, F. and Altug, E. (2016). System design of a novel tilt-roll rotor quadrotor uav. Journal of Intelligent & Robotic Systems, 84.

Slotine, J., Slotine, J., and Li, W. (1991). Applied Nonlinear Control. Prentice Hall.

Tabuchi, R. T. (2015). Dise˜no de un veh´ıculo a´ereo no tripulado de cuatro rotores para una carga ´util de 1 kg. Master’s thesis, Pontificia Universidad Cat´olica del Per´u.

Tenorio, J. L., Guerrero, J. F., T´ellez, J. J., Cruz, R., Mino, G., Maya, R. L., Vega, A., and Sanz´on, J. M. (2014). Estabilizaci´on en tiempo real de un mini helic´optero de cuatro rotores con acciones de control limitadas. Memorias del Congreso Nacional de Control Autom´atico.

Villa, D. K., Brand´ao, A. S., and Sarcinelli-Filho, M. (2018). Load transportation using quadrotors: a survey of experimental results. Proceedings of 2018 InternationalConference on Unmanned Aircraft Systems (ICUAS).

Xu, B. (2017). Disturbance observer-based dynamic surface control of transport aircraft with continuous heavy cargo airdrop. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(1):161–170.

Xu, B. (2018). Composite learning finite-time control with application to quadrotors. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(10):1806–1815.

Zhou, X., Zhang, X., and Zhang, J. (2016). Stabilization and trajectory control ofa quadrotor with uncertain suspended load. ArXiv Cornell University.

Published
2022-01-05
How to Cite
López-Hoyos, J. C., Cervantes-Rojas, J. S., & Ordaz-Oliver, P. (2022). Adaptive control for an unmanned aerial vehicle under payload variation with precision agriculture applications. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(18), 92-99. https://doi.org/10.29057/icbi.v9i18.7735

Most read articles by the same author(s)