DFT study of Pt-Ir clusters with triangular prism geometry

Keywords: Clusters, Bimetallic, Platinum, Iridium, DFT

Abstract

At this work, a systematic study of structural and electronic properties for bimetallic clusters of Pt6−nIrn [where n = 0 – 6] was presented by applying B3LYP/LanL2DZ as a computational methodology through density functional theory (DFT). The Pt6 and Ir6 pure clusters showed 3D configurations highly stable with electronic multiplicity (μ) between 7 and 13. The most stable Pt6 cluster adopted a triangular prism geometry. To evaluate the doped clusters, the main bond distance, Mulliken charges, frontier molecular orbitals analysis, and electrostatic potential map were determinate. The evaluation of electronic and structural properties showed that the incorporation of iridium in platinum clusters modify substantially its reactivity.

Downloads

Download data is not yet available.

References

Bhattacharyya, K., & Majumder, C. (2007). Growth pattern and bonding trends in Ptn (n= 2–13) clusters: Theoretical investigation based on first principle calculations. Chemical Physics Letters, 446(4-6), 374-379. https://doi.org/10.1016/j.cplett.2007.08.084

Chen, M., & Dixon, D. A. (2013). Low-Lying Electronic States of Ir n Clusters with n= 2–8 Predicted at the DFT, CASSCF, and CCSD (T) Levels. The Journal of Physical Chemistry A, 117(17), 3676-3688. DOI: 10.1021/jp4014465

Chen, Y., Huo, M., Chen, T., Li, Q., Sun, Z., & Song, L. (2015). The properties of Ir n (n= 2–10) clusters and their nucleation on γ-Al 2 O 3 and MgO surfaces: From ab initio studies. Physical Chemistry Chemical Physics, 17(3), 1680-1687. DOI: 10.1039/c4cp04881d

Du, J., Sun, X., Chen, J., & Jiang, G. (2010). A theoretical study on small iridium clusters: structural evolution, electronic and magnetic properties, and reactivity predictors. The Journal of Physical Chemistry A, 114(49), 12825-12833. DOI: 10.1021/jp107366z

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Fox, D. J. (2008). Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford CT, 2016 Search PubMed;(b) J. Chaia and M. Head-Gordon. Phys. Chem. Chem. Phys, 10, 6615-6620.

Guo, W., Rao, Q., & Zhang, X. (2012). Theoretical study on structure and stability of PtIrn (0,±)(n= 1-5) clusters. Chinese Journal of Computational Physics, 3.

Gao, K., Zhang, X. R., Yu, Z. C., & Huo, P. Y. (2018). Structure stability and electronic properties of PtmIrn (m+ n= 2–7) clusters: A DFT study. Computational and Theoretical Chemistry, 1138, 168-175. DOI: 10.1016/j.comptc.2018.06.016

Gao, K., Zhang, X. R., & Yu, Z. C. (2020). Structure stability and electronic properties of Pt m Ir n (m+ n= 8− 1 0) and adsorption sites of on Pt–Ir clusters at the DFT level. Surface Review and Letters, 27(05), 1950144. DOI: 10.1142/S0218625X19501440

Hamad, B., El-Bayyari, Z., & Marashdeh, A. (2014). Investigation of the stability of platinum clusters and the adsorption of nitrogen monoxide: First principles calculations. Chemical Physics, 443, 26-32. DOI: 10.1016/j.chemphys.2014.07.004

Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of chemical physics, 82(1), 270-283. DOI: 10.1063/1.448799

Heredia, C. L., Ferraresi-Curotto, V., & López, M. B. (2012). Characterization of Ptn (n= 2–12) clusters through global reactivity descriptors and vibrational spectroscopy, a theoretical study. Computational materials science, 53(1), 18-24. DOI: 10.1016/j.commatsci.2011.09.005

Hertwig, R. H., & Koch, W. (1997). On the parameterization of the local correlation functional. What is Becke-3-LYP?. Chemical Physics Letters, 268(5-6), 345-351. DOI: 10.1016/S0009-2614(97)00207-8

Li, R., Odunlami, M., & Carbonnière, P. (2017). Low-lying Ptn cluster structures (n= 6–10) from global optimizations based on DFT potential energy surfaces: sensitivity of the chemical ordering with the functional. Computational and Theoretical Chemistry, 1107, 136-141. DOI: 10.1016/j.comptc.2017.02.010

Nie, A., Wu, J., Zhou, C., Yao, S., Luo, C., Forrey, R. C., & Cheng, H. (2007). Structural evolution of subnano platinum clusters. International Journal of Quantum Chemistry, 107(1), 219-224. DOI: 10.1002/qua.21011

Sellmyer, D. J., & Skomski, R. (Eds.). (2006). Advanced magnetic nanostructures. Springer Science & Business Media. ISBN 978-0-387-23316-1

Xiao, L., & Wang, L. (2004). Structures of platinum clusters: Planar or spherical?. The Journal of Physical Chemistry A, 108(41), 8605-8614. DOI: 10.1021/jp0485035

Published
2021-12-12
How to Cite
Rangel-Peña, U. J., Zárate-Hernández, L. A., Camacho-Mendoza, R. L., González-Montiel, S., & Cruz-Borbolla, J. (2021). DFT study of Pt-Ir clusters with triangular prism geometry . Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 157-161. https://doi.org/10.29057/icbi.v9iEspecial2.7996