Application with Cozmo robot for trajectory tracking control as embedded system

Keywords: Cozmo Robot, Trayectory Tracking, Nonlinear Control, Embedded system

Abstract

This paper presents a novel application with the Cozmo robot for trajectory following control through practical experience as an embedded control system. In this work, the installation and programming for the Cozmo robot is presented, whose embedded system is commercially available for the applications, animations, and pre-established movements. The main contribution of this article is to carry out a control system for trajectory tracking using Matlab/Simulink, Python, Visual Studio and Kinect v2 as a feedback sensor using a nonlinear control strategy. The solution proposal allows validating and verifying that various types of experimental results can be developed through the Cozmo robot, which greatly favor the application of real-time feedback control techniques.

Downloads

Download data is not yet available.

References

Anki Inc. (1), “Meet Cozmo”, Cozmo. [En línea] https://www.anki.com/en-us/cozmo, Accessed: 28-08-2020.

Anki Inc. (2), “Instalación de Cozmo”, Cozmo. http://cozmosdk.anki.com/docs/, Accessed: 28-08-2020.

Araújo, A., Portugal, M. S., Couceiro, J., Sales, J. & Rocha, R. P. (2014). Desarrollo de un robot móvil compacto integrado en el middleware ROS. Revista Iberoamericana de Automática e Informática Industrial, 11(3), 315-326. https://doi.org/10.1016/j. riai.2014.02.009

Ayed, I., Moyà, B., Martínez, P., Varona, J., Ghazel, A. & Jaume, A. (2017). Validación de dispositivos RGBD para medir terapéuticamente el equilibrio: el test de alcance funcional con Microsoft Kinect. Revista Iberoamericana de Automática e Informática Industrial, 14(1), 115-120 https://doi.org/10.1016/j.riai.2016.07.007

Canudas de Wit, C., Siliciano, B., Bastin, G., Theory of Robot Control, Springer, 1996.

Kolmanovsky, I., and McClamroch, N. H., “Developments in nonholonomic control problems,” IEEE Control Systems Magazine, vol. 15, no. 6, pp. 20–36, 1995.

Lefkeli, D., Ozbay, Y., Gurhan-Canli, Z., Eskenazi, T., “Competing with or Against Cozmo, the Robot: Influence of Interaction Context and Outcome on Mind Perception,”, International Journal of Social Robotics, Springer, 2020. DOI: https:10.1007/s12369-020-00668-3

Microsoft. “Coordinate mapping”, Camera space, https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn785530(v=ieb.10) Accessed: 20-10-2019.

Muñoz, R., Barcelos, T., Villaroel, R., Guíñez, R. & Merino, E. (2018). Body posture visualizer to support multimodal learning analytics. IEEE Latin America Transactions, 2706-2715, https://doi.org/10.1109/TLA.2018.8795111

Ojeda-Misses M. A., Silva-Ochoa H. & Soria-López A. (2021). Ludibot: Interfaz humano-robot móvil para el aprendizaje lúdico de idiomas. Ingeniería Investigación y Tecnología, 22 (03), 1-10. https://doi.org/10.22201/fi.25940732e.2021.22.3.021

Pires Kusumota, V. L., Vidal Aroca, R. and Martins, F. N., "An Open Source Framework for Educational Applications Using Cozmo Mobile Robot," 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), Joao Pessoa, 2018, pp. 569-576, DOI: 10.1109/LARS/SBR/WRE.2018.00104.

Rossomando, F. G., Soria, C., and Carelli, R., "Adaptive Neural Dynamic Compensator for Mobile Robots in Trajectory tracking control," in IEEE Latin America Transactions, vol. 9, no. 5, pp. 593-602, 2011, DOI: 10.1109/TLA.2011.6030965.

Sánchez, C. M., et al., "An Embedded Hardware for Implementation of a Tracking Control in WMRs," in IEEE Latin America Transactions, vol. 16, no. 7, pp. 1835-1842, July 2018, DOI: 10.1109/TLA.2018.8447346.

Siciliano, B., and Khatib, O., Handbook of Robotics. Heidelberg, Berlin, Germany: Springer-Verlag, pp. 1065–1298, 2008.

Siegwart, R., and Nourbakhsh, I. R., Introduction to Autonomous Mobile Robots. Cambridge, MA, USA: MIT Press, 2004.

Silva Ortigoza, R., Aranda, M. M., Ortigoza, G. S., Guzmán, V. M. H., Vilchis, M. A. M., González, G. S., Lozada, J. C. H. and. Carbajal, M. O., “Wheeled mobile robots: A review,” IEEE Latin America Transactions, vol. 10, no. 6, pp. 2209-–2217, 2012. DOI: 10.1109/TLA.2012.6418124

Silva Ortigoza, R., Garcia Sanchez, J. R., Hernandez Guzman, V. M., Marquez Sanchez, M., and Marcelino Aranda, M., "Trajectory Tracking Control for a Differential Drive Wheeled Mobile Robot Considering the Dynamics Related to the Actuators and Power Stage," in IEEE Latin America Transactions, vol. 14, no. 2, pp. 657-664, Feb. 2016, DOI: 10.1109/TLA.2016.7437207.

Taylor, H. M., Dondrup, C. and Lohan, K. S. "Introducing a Scalable and Modular Control Framework for Low-cost Monocular Robots in Hazardous Environments," 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019, pp. 6421-6426, DOI: 10.1109/IROS40897.2019.8967521.

Touretzky, D. S., "Computational thinking and mental models: From kodu to calypso," 2017 IEEE Blocks and Beyond Workshop (B&B), Raleigh, NC, 2017, pp. 71-78, doi: 10.1109/BLOCKS.2017.8120416.

Published
2022-11-30
How to Cite
Ojeda-Misses, M. A. (2022). Application with Cozmo robot for trajectory tracking control as embedded system. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial6), 24-32. https://doi.org/10.29057/icbi.v10iEspecial6.8873