Regressor-based adaptive control for trajectory tracking applied to a quadrotor

Keywords: Adaptive control, Lyapunov stability, nonlinear control, parameter uncertainty, quadrotor

Abstract

This document presents a regressor-based adaptive controller that works as an external loop controller for a quadrotor that already has an inaccessible inner loop controller. The proposed controller is conceived for trajectory tracking tasks and to operate without prior knowledge of the quadrotor parameters, as well as the internal controller. The stability of the state space origin is analyzed by means of the Lyapunov theory from which the parameter adaptation law is obtained, as well as the tuning rules, thus guaranteeing the functionality of the proposed controller. In addition, the results of the numerical simulations demonstrated the functionality of the proposed controller as well its robustness to parameter uncertainties .

Downloads

Download data is not yet available.

References

Chen, A. Y., Huang, Y.-N., Han, J.-Y., & Kang, S.-C. J. (2014). A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Structures and Systems, 13(6):1065--1094. DOI: http://dx.doi.org/10.12989/sss.2014.13.6.1065.

Dupont, Q. F., Chua, D. K., Tashrif, A., & Abbott, E. L. (2017). Potential applications of UAV along the construction's value chain. Procedia Engineering, 182:165--173. DOI: https://doi.org/10.1016/j.proeng.2017.03.155.

Engel, J., Sturm, J., & Cremers, D. (2012). Camera-based navigation of a low-cost quadrocopter. In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2815--2821. DOI: 10.1109/IROS.2012.6385458.

Falcón, P., Barreiro, A., & Cacho, M. D. (2013). Modeling of Parrot Ardrone and passivity-based reset control. In Proc. 9th Asian Control Conference, pages 1--6. DOI: 10.1109/ASCC.2013.6606362.

Idrissi, M., Salami, M., & Annaz, F. (2022). A review of quadrotor unmanned aerial vehicles: Applications, architectural design and control algorithms. Journal of Intelligent & Robotic Systems, 104(2):1--33. DOI: https://doi.org/10.1007/s10846--021--01527--7.

Khalil, H. K. (2002). Nonlinear systems. Prentice-Hall, Upper Saddle River, NJ, USA, 3 edition.

Kim, J., Gadsden, S. A., & Wilkerson, S. A. (2019). A comprehensive survey of control strategies for autonomous quadrotors. Canadian Journal of Electrical and Computer Engineering, 43(1):3--16. DOI: 10.1109/CJECE.2019.2920938.

Kourani, A. & Daher, N. (2021). Marine locomotion: A tethered UAV-buoy system with surge velocity control. Robotics and Autonomous Systems, 145 (103858):1--17. DOI: https://doi.org/10.1016/j.robot.2021.103858.

Lopez-Sanchez, I., Rossomando, F., Pérez-Alcocer, R., Soria, C., Carelli, R., & Moreno-Valenzuela, J. (2021). Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks. Neurocomputing, 460:243--255. DOI: https://doi.org/10.1016/j.neucom.2021.06.079.

Mo, H. & Farid, G. (2019). Nonlinear and adaptive intelligent control techniques for quadrotor UAV--a survey. Asian Journal of Control, 21(2):989--1008. DOI: https://doi.org/10.1002/asjc.1758.

Moreno-Valenzuela, J., Pérez-Alcocer, R., Guerrero-Medina, M., & Dzul, A. (2018). Nonlinear PID-type controller for quadrotor trajectory tracking. IEEE/ASME Transactions on Mechatronics, 23(5):2436--2447. DOI: 10.1109/TMECH.2018.2855161.

Nguyen, H., Kamel, M., Alexis, K., & Siegwart, R. (2021). Model predictive control for micro aerial vehicles: A survey. In Proc. European Control Conference, pages 1556--1563. DOI: 10.23919/ECC54610.2021.9654841.

Nguyen, H. T., Quyen, T. V., Nguyen, C. V., Le, A. M., Tran, H. T., & Nguyen, M. T. (2020). Control algorithms for UAVs: A comprehensive survey. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 7(23):1--11. DOI: 10.4108/eai.18--5--2020.164586.

Pérez-Alcocer, R. & Moreno-Valenzuela, J. (2019). Adaptive control for quadrotor trajectory tracking with accurate parametrization. IEEE Access, 7:53236--53247. DOI: 10.1109/ACCESS.2019.2912608.

Pérez-Alcocer, R., Moreno-Valenzuela, J., & Miranda-Colorado, R. (2016). A robust approach for trajectory tracking control of a quadrotor with experimental validation. ISA Transactions, 65:262--274. DOI: https://doi.org/10.1016/j.isatra.2016.08.001.

Rosales, C., Rossomando, F., Soria, C., & Carelli, R. (2018). Neural control of a quadrotor: A state-observer based approach. In Proc. Int. Conf. on Unmanned Aircraft Systems}, pages 647--653. DOI: 10.1109/ICUAS.2018.8453303.

Santana, L. V., Brandao, A. S., & Sarcinelli-Filho, M. (2016). Navigation and cooperative control using the AR.Drone quadrotor. Journal of Intelligent & Robotic Systems, 84(1-4):327--350. DOI: https://doi.org/10.1007/s10846--016--0355--y.

Santana, L. V., Brandao, A. S., Sarcinelli-Filho, M., & Carelli, R. (2014). A trajectory tracking and 3D positioning controller for the AR.Drone quadrotor. In Proc. Int. Conf. on Unmanned Aircraft Systems, pages 756--767. DOI: 10.1109/ICUAS.2014.6842321.

Santos, M. C., Santana, L. V., Brandao, A. S., Sarcinelli-Filho, M., & Carelli, R. (2017). Indoor low-cost localization system for controlling aerial robots. Control Engineering Practice, 61:93--111. DOI: https://doi.org/10.1016/j.conengprac.2017.01.011.

Santos, M. C., Santana, L. V., Martins, M. M., Brandao, A. S., & Sarcinelli-Filho, M. (2015). Estimating and controlling UAV position using RGB-D/IMU data fusion with decentralized information/Kalman filter. In Proc. IEEE International Conference on Industrial Technology, pages 232--239. DOI: 10.1109/ICIT.2015.7125104.

Santos, M. C., Sarcinelli-Filho, M., & Carelli, R. (2016). Trajectory tracking for UAV with saturation of velocities. In Proc. International Conference on Unmanned Aircraft Systems, pages 643--648. DOI: 10.1109/ICUAS.2016.7502598.

Santos, M. C. P., Rosales, C. D., Sarapura, J. A., Sarcinelli-Filho, M., & Carelli, R. (2019). An adaptive dynamic controller for quadrotor to perform trajectory tracking tasks. Journal of Intelligent & Robotic Systems}, 93(1):5--16. DOI: https://doi.org/10.1007/s10846--018--0799--3.

Santos, M. C. P., Rosales, C. D., Sarcinelli-Filho, M., & Carelli, R. (2017). A novel null-space-based UAV trajectory tracking controller with collision avoidance. IEEE/ASME Transactions on Mechatronics, 22(6):2543--2553. DOI: 10.1109/TMECH.2017.2752302.

Sarapura, J. A., Roberti, F., Toibero, J. M., Sebastián, J. M., & Carelli, R. (2020). Visual servo controllers for an UAV tracking vegetal paths. In Machine Vision and Navigation, pages 597--625. Springer, Cham, Switzerland. DOI: https://doi.org/10.1007/978-3-030-22587-2_18.

Tomás, K., Vonásek, V., Fiser, D., and Faigl, J. (2011). AR-Drone as a robotic platform for research and education. In Proc. International Conference on Research and Education in Robotics--EUROBOT 2011, pages 172--186. DOI: https://doi.org/10.1007/978--3--642--21975--7_16.

Wang, N. and Ahn, C. K. (2021). Coordinated trajectory-tracking control of a marine aerial-surface heterogeneous system. IEEE/ASME Transactions on Mechatronics, 26(6):3198--3210. DOI: 10.1109/TMECH.2021.3055450.

Zhang, F. (2006). The Schur complement and its applications, volume 4 of Numerical Methods and Algorithms. Springer, Boston, MA, USA.

Published
2022-10-05
How to Cite
Lopez-Sanchez, I. A., Moreno-Valenzuela, R., & Pérez-Alcocer, R. R. (2022). Regressor-based adaptive control for trajectory tracking applied to a quadrotor. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial4), 73-80. https://doi.org/10.29057/icbi.v10iEspecial4.9191