Study of the COVID-19 pandemic in Mexico using a compartmental model with delays

Keywords: SIR Models, Luenberger Observers, COVID-19, Time-delay systems

Abstract

In this work, a mathematical model of the SIR-type is proposed, which contemplates population compartments of Susceptible, Infectious and Removed, as well as dead times of incubation, recovery and loss of immunity. In Removed, both Recovered and Deaths can be considered. In addition, a Luenberger-type status observer is used to estimate data on unreported populations, such as the number of Susceptible and Removed, based on data on cases confirmed by the World Health Organization. Finally, to illustrate the behavior of the model and the observer, simulations are presented considering the variants with the greatest impact of COVID-19, in time windows with the greatest impact on the population of Mexico.

Downloads

Download data is not yet available.

References

Banco Mundial (2020). La COVID-19 (coronavirus) hunde a la economía mundial en la peor recesión desde la Segunda Guerra Mundial. https://www.bancomundial.org/es/news/pressrelease/2020/06/08/covid-19-to-plunge-global-economyinto-worst-recession-since-world-war-ii. [Web; accedido el 10-03-2022].

BBC News Mundo (2021). Ómicron: los gráficos que muestran las 5 variantes de SARS-CoV-2 que la OMS considera ”de preocupación”. https://www.bbc.com/mundo/noticias-57527964. [Web; accedido el 04-03-2022].

Blima, P.-A., Efimo, D., y Ushirobir, R. (2018). A class of nonlinear adaptive observers for SIR epidemic model. En 2018 European Control Conference (ECC), pp. 1–6. IEEE.

Bornard, G., Couenne, N., y Celle, F. (1989). Regularly persistent observers for bilinear systems. En New trends in nonlinear control theory, pp. 130–140. Springer.

Casals, M., Guzmán, K., y Caylá, J. A. (2009). Modelos matemáticos utilizados en el estudio de las enfermedades transmisibles. Revista española de salud pública, 83(5):689–695.

Castaños, F. y Mondié, S. (2021). Observer-based predictor for a SIR model with delays: An optimal-control case study.

De la Sen, M., Alonso-Quesada, S., Ibeas, A., y Nistal, R. (2012). An observerbased vaccination law for a SEIR epidemic model. International Journal of Computer Theory and Engineering, 4(3):379.

Funahashi, Y. (1979). Stable state estimator for bilinear systems. International Journal of Control, 29(2):181–188.

GISAID (2022). Wisconsin SARS-CoV-2 (hCoV-19) Genomic Dashboard. https://dataportal.slh.wisc.edu/sc2dashboard. [Web; accedido el 06-03-2022].

Hara, S. y Furuta, K. (1976). Minimal order state observers for bilinear systems. International Journal of Control, 24(5):705–718.

Ibeas, A., de la Sen, M., Alonso-Quesada, S., y Zamani, I. (2015). Stability analysis and observer design for discrete-time SEIR epidemic models. Advances in Difference Equations, 2015(1):1–21.

Kermack, W. O. y McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772):700–721.

Martínez, J. (2022). COVID-19: La variante delta del SARS-COV-2, un enemigo de cuidado. https://www.anahuac.mx/mexico/noticias/Variante-Delta-del-SARS-Cov-2. [Web; accedido el 06-03-2022].

OMS (2022). Seguimiento de las variantes del SARS-CoV-2. https://www.who.int/es/activities/tracking-SARS-CoV-2-variants/. [Web; accedido el 06-03-2022].

UNESCO (2020). COVID-19: Problemas sociales y psicológicos en la pandemia. https://es.unesco.org/news/covid-19-problemassociales-y-psicologicos-pandemia. [Web; accedido el 10-03-2022].

Unmubig, B. (2020). Las consecuencias de la pandemia del coronavirus y lo que se debería hacer. https://mx.boell.org/es/2020/09/22/lasconsecuencias-de-la-pandemia-del-coronavirus-y-lo-quese-deberia-hacer. [Web; accedido el 10-03-2022].

Vega, A. (2020). Hospitales colapsarán en enero si los contagios de COVID no bajan en diciembre, alertan médicos. https://www.animalpolitico.com/2020/12/hospitales-colapsaranenero-si-contagios-covid-no-bajan/. [Web; accedido el 11-03-2022].

Watanabe, N. (2022). A k-means method for trends of time series: An application to time series of covid-19 cases in japan. Jpn J Stat Data Sci, 3:1–17.

Williamson, D. (1977). Observation of bilinear systems with application to biological control. Automatica, 13(3):243–254.

Ávila Pozos, R. y Rangel Zuñiga, D. (2017). Revisión histórica sobre la epidemiología matemática. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 4(8).

Published
2022-10-05
How to Cite
Hernández-Ávila, J. A., Villafuerte-Segura, R., Velázquez-Velázquez , J. E., & Ávila-Pozos, R. (2022). Study of the COVID-19 pandemic in Mexico using a compartmental model with delays. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial4), 37-43. https://doi.org/10.29057/icbi.v10iEspecial4.9304