Design and validation of a UUV with integrated computer vision system

Keywords: Unmanned Underwater Vehicle (UUV), Image Processing Algorithms, Computer Vision, Underwater Exploration, CFD Simulations

Abstract

This article presents the design and validation of an Unmanned Underwater Vehicle (UUV) equipped with an advanced computer vision system based on image processing algorithms. The main objective is to employ mechatronics principles and cutting-edge technologies to develop a UUV capable of capturing images and telemetry data, enhancing underwater exploration in challenging environments. The computer vision algorithm, based on OpenCV, enables real-time detection and recognition of submerged structures and objects. Validation is performed through static analyses and computational fluid dynamics (CFD) simulations. The results demonstrate the effectiveness and versatility of the UUV in various applications, including archaeological inspections, search and rescue operations, and the conservation of protected marine reserves.

Downloads

Download data is not yet available.

References

Brown, E. (2003). The legal regime governing the operation of AUVs. En G. Griffiths (Ed.), Technology and Applications of Autonomous Underwater Vehicles (pp. 295–313). London: Taylor & Francis Group.

Brutzman, D.P., Kanayama, Y. y Zyda, M. J. (1992). Integrated simulation for rapid development of autonomous underwater vehicles. En: Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology Washington, D.C.: IEEE.

Griffiths, G., Stevenson, P., Webb, A.T., Millard, N.W., Mcphail, S.D., Pebody, M. y Perrett, J.R. (1999). Open ocean operational experience with the Autosub-1 autonomous underwater vehicle. En Proceedings 11th Unmanned Untethered Submersible Technology Symposium (pp. 1–12). Durham, New Hampshire.

Griffiths, G. (2003). Technology and Applications of Autonomous Underwater Vehicles. London: Taylor & Francis Group.

Hawkins, S. J., Allcock, A. L., Bates, A. E., Firth, L. B., Smith, I. P., Swearer, S. E. y Todd P. A. (eds) (2019). Oceanography and Marine Biology: An annual review. Volume 57. CRC Press.

Hibbeler, R. C. (2017). Mecánica de materiales. Ciudad de México: Pearson Educación.

Johannessen, O. M., Muench, R. D. y Overland, J. E. (1994). The polar oceans and their role in shaping the global environment. Geophysical Monographs 85. American Geophysical Union.

Khatwani, J. y Srivastava, V. (2019). Effect of Process Parameters on Mechanical Properties of Solidified PLA Parts Fabricated by 3D Printing Process. In: Kumar, L., Pandey, P., Wimpenny, D. (eds) 3D Printing and Additive Manufacturing Technologies. Springer, Singapore.

Moore, S. W., Bohm, H. y Jensen, V. (2010). Underwater Robotics: Science, Design & Fabrication. Monterey, CA: Advanced Technology Education (MATE) Center.

Schill, F., Bahr, A. y Martinolli, A. (2018). Vertex: A new distributed underwater robotic platform for Distributed Autonomous Robotic Systems. Suiza: Springer.

Yan, XT. y Zante, R. (2010). A Mechatronic Design Process and Its Application. In: Bradley, D., Russell, D. (eds) Mechatronics in Action. Springer, London.

Published
2024-04-22
How to Cite
Vázquez-Tzompantzi, M., Salgado-Jiménez, T., & Silva-Morales, B. Y. (2024). Design and validation of a UUV with integrated computer vision system. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(Especial2), 122-128. https://doi.org/10.29057/icbi.v12iEspecial2.12346