Influence of chemical potential on powder pack boriding

Keywords: Chemical potential, powder pack boriding, diffusion model, statistical model

Abstract

In this work, the influence of the boron chemical potential on the growth of the Fe2B iron boride layer during the powder pack boriding treatment was studied . For this purpose the treatment was applied on ASTM A36 steel samples using a commercial boriding agent which was reused in three cycles reducing its chemical potential; the exposure time and temperature treatment were also varied. The kinetics of the process was studied from the experimental results using a diffusion model and a statistical model. The parameters of the diffusion model revealed that the activation energy was not affected by the decrease of the chemical potential and an average value Q=158.62 kJ·mol-1 was determined, this value vas same to the literature data for this steel; on the other hand, the incubation time t0 and the pre-exponential coefficient D0 were affected. A 4x4x3 factorial experiment design was proposed and an ANOVA statistical analysis and a fit to a general regression model were performed; the results revealed that the variables cycle, temperature, and time had a contribution in the Fe2B layer thickness of 39 %, 25.79 %, and 19.05 % respectively. Both methodologies contribute to the control of the process since they allow simulating the thickness of the layer as a function of its variables, these models can be optimized using tools such as contour diagrams and the results of the statistical analysis, and with this achieve a reduction in energy consumption and production supplies.

Downloads

Download data is not yet available.

References

Abdellah, Z. N., Keddam, M., & Jurči, P. (2021). Simulation of boronizing kinetics of ASTM A36 steel with the alternative kinetic model and the integral method. KOM–Corrosion and Material Protection Journal, 65(1), 33–39.
Busby, P. E., Warga, M. E., & Wells, C. (1953). Diffusion and Solubility of Boron in Iron and Steel. JOM, 5(11), 1463–1468. https://doi.org/10.1007/BF03397637
Campos-Silva, I., Franco-Raudales, O., Meda-Campaña, J., Espino-Cortés, F., & Acosta-Pavón, J. (2019). Growth kinetics of CoB–Co2B layers using the powder-pack boriding process assisted by a direct current field. High Temperature Materials and Processes, 38(2019), 158–167.
Deepika. (2020). Nanotechnology implications for high performance lubricants. SN Applied Sciences, 2(6), 1128. https://doi.org/10.1007/s42452-020-2916-8
Domínguez, M. O. (2015). Evaluación de la movilidad del boro en un hierro puro ARMCO endurecido a través del proceso borurización base polvo. Ingenio y Conciencia Boletín Científico de la Escuela Superior Ciudad Sahagún, 2(4).
Dominguez, M. O. (2019). Comparación de dos modelos de difusión para estudiar la cinética de crecimiento de las capas boruradas en un acero AISI 12L14. Ingenio y Conciencia Boletín Científico de la Escuela Superior Ciudad Sahagún, 6(12), 1–14.
George, E. P., Raabe, D., & Ritchie, R. O. (2019). High-entropy alloys. Nature reviews materials, 4(8), 515–534.
Holmberg, K., & Erdemir, A. (2017). Influence of tribology on global energy consumption, costs and emissions. Friction, 5, 263–284.
IEA (International Energy Agency). (2010). Energy technology perspectives 2010.
Keddam, M., Ortiz-Dominguez, M., Elias-Espinosa, M., Arenas-Flores, A., Zuno-Silva, J., Zamarripa-Zepeda, D., & Gomez-Vargas, O. A. (2018). Kinetic Investigation and Wear Properties of Fe2B Layers on AISI 12L14 Steel. Metallurgical and Materials Transactions A, 49(5), 1895–1907. https://doi.org/10.1007/s11661-018-4535-1
Krukovich, M. G., Prusakov, B. A., & Sizov, I. G. (2016). The Components and Phases of Systems ‘Boron-Iron’ and ‘Boron-Carbon-Iron’. En M. G. Krukovich, B. A. Prusakov, & I. G. Sizov (Eds.), Plasticity of Boronized Layers (pp. 13–21). Springer International Publishing. https://doi.org/10.1007/978-3-319-40012-9_3
Kulka, M. (2019). Trends in Thermochemical Techniques of Boriding. En M. Kulka (Ed.), Current Trends in Boriding: Techniques (pp. 17–98). Springer International Publishing. https://doi.org/10.1007/978-3-030-06782-3_4
Martini, C., Palombarini, G., & Carbucicchio, M. (2004). Mechanism of thermochemical growth of iron borides on iron. Journal of Materials Science, 39(3), 933–937. https://doi.org/10.1023/B:JMSC.0000012924.74578.87
Mendez, P. F., Barnes, N., Bell, K., Borle, S. D., Gajapathi, S. S., Guest, S. D., Izadi, H., Gol, A. K., & Wood, G. (2014). Welding processes for wear resistant overlays. Journal of Manufacturing Processes, 16(1), 4–25.
Milinović, A., Marušić, V., Konjatić, P., & Berić, N. (2022a). Effect of carbon content and boronizing parameters on growth kinetics of boride layers obtained on carbon steels. Materials, 15(5), 1858.
Milinović, A., Marušić, V., Konjatić, P., & Berić, N. (2022b). Effect of carbon content and boronizing parameters on growth kinetics of boride layers obtained on carbon steels. Materials, 15(5), 1858.
Nakai, M. E., Aguiar, P. R., Guillardi Jr, H., Bianchi, E. C., Spatti, D. H., & D’Addona, D. M. (2015). Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics. Expert Systems with Applications, 42(20), 7026–7035.
Nam, N. D., Xuan, N. A., Van Bach, N., Nhung, L. T., & Chieu, L. T. (2019). Control gas nitriding process: A review. J. Mech. Eng. Res. Dev, 42, 17–25.
Orihel, P., Drienovský, M., Gabalcová, Z., Jurči, P., & Keddam, M. (2023). Characterization and boron diffusion kinetics on the surface-hardened layers of Royalloy steel. Coatings, 13(1), 113.
Ortiz-Domínguez, M., Cruz-Avilés, A., González-Ortega, E. B., Muñoz-Sánchez, Y., Damián-Mejía, O., & Fernández-De Dios, L. D. (2024a). Evaluación de la cinética de crecimiento de las capas de Fe2B formadas sobre la superficie del acero ASTM A307 a través de dos modelos de difusión. Ingenio y Conciencia Boletín Científico de la Escuela Superior Ciudad Sahagún, 11(21), 1–16.
Ortiz-Domínguez, M., Cruz-Avilés, A., González-Ortega, E. B., Muñoz-Sánchez, Y., Damián-Mejía, O., & Fernández-De Dios, L. D. (2024b). Evaluación de la cinética de crecimiento de las capas de Fe2B formadas sobre la superficie del acero ASTM A307 a través de dos modelos de difusión. Ingenio y Conciencia Boletín Científico de la Escuela Superior Ciudad Sahagún, 11(21), 1–16.
Ortiz-Domínguez, M., Gómez-Vargas, O. A., Bárcenas-Castañeda, M., & Castellanos-Escamilla, V. A. (2022a). Comparison and analysis of diffusion models: Growth kinetics of diiron boride layers on ASTM A283 steel. Materials, 15(23), 8420.
Ortiz-Domínguez, M., Gómez-Vargas, O. A., Bárcenas-Castañeda, M., & Castellanos-Escamilla, V. A. (2022b). Comparison and Analysis of Diffusion Models: Growth Kinetics of Diiron Boride Layers on ASTM A283 Steel. Materials, 15(23), 8420.
Ortiz-Domínguez, M., Gómez-Vargas, O. A., Keddam, M., Arenas-Flores, A., & García-Serrano, J. (2017). Kinetics of boron diffusion and characterization of Fe2B layers on AISI 9840 steel. Protection of Metals and Physical Chemistry of Surfaces, 53(3), 534–547. https://doi.org/10.1134/S2070205117030169
Ortiz-Domínguez, M., Gómez-Vargas, O., Ares de Parga, G., Torres-Santiago, G., Velázquez-Mancilla, R., Castellanos-Escamilla, V., Mendoza-Camargo, J., & Trujillo-Sánchez, R. (2019). Modeling of the growth kinetics of boride layers in powder-pack borided ASTM A36 steel based on two different approaches. Advances in materials science and engineering, 2019, 1–12.
Ortiz-Domínguez, M., Morales-Robles, Á., Gómez-Vargas, O., & Solis-Romero, J. (2020). Recycling of the Powder-pack Boriding Mixture: Microstructural Characterization of Fe2B Layers on ASTM A36 Steel. Microscopy and Microanalysis, 26(S2), 2220–2222.
Ortiz-Domínguez, M., Morales-Robles, Á. J., Gómez-Vargas, O. A., & de Jesús Cruz-Victoria, T. (2023). Analysis of Diffusion Coefficients of Iron Monoboride and Diiron Boride Coating Formed on the Surface of AISI 420 Steel by Two Different Models: Experiments and Modelling. Materials, 16(13), 4801.
Rajoria, S., Vashishtha, M., & Sangal, V. K. (2022). Treatment of electroplating industry wastewater: A review on the various techniques. Environmental Science and Pollution Research, 29(48), 72196–72246.
Shang, J., Zhang, M., Tan, S., Xie, A., Meng, L., & Zhang, Y. (2023). Improved wear and hot melting loss resistance of a vanadium carbide layer prepared on H13 steel. Materials Letters, 337, 133967.
Soković, M., Barišić, B., & Sladić, S. (2009). Model of quality management of hard coatings on ceramic cutting tools. Journal of Materials Processing Technology, 209(8), 4207–4216. https://doi.org/10.1016/j.jmatprotec.2008.11.026
Vamshi, M., Singh, S. K., Sateesh, N., Nagaraju, D. S., & Subbiah, R. (2020). A review on influence of carburizing on ferritic stainless steel. 10th International Conference of Materials Processing and Characterization, 26, 937–943. https://doi.org/10.1016/j.matpr.2020.01.151
Vardelle, A., Moreau, C., Akedo, J., Ashrafizadeh, H., Berndt, C. C., Berghaus, J. O., Boulos, M., Brogan, J., Bourtsalas, A. C., & Dolatabadi, A. (2016). The 2016 thermal spray roadmap. Journal of thermal spray technology, 25, 1376–1440.
VillaVelázquez-Mendoza, C., Rodríguez-Mendoza, J., Ibarra-Galván, V., Hodgkins, R., López-Valdivieso, A., Serrato-Palacios, L., Leal-Cruz, A., & Ibarra-Junquera, V. (2014). Effect of substrate roughness, time and temperature on the processing of iron boride coatings: Experimental and statistical approaches. International Journal of Surface Science and Engineering, 8(1), 71–91.
Zeng, Q., & Dong, G. (2013). Influence of load and sliding speed on super-low friction of nitinol 60 alloy under castor oil lubrication. Tribology Letters, 52, 47–55.
Zhai, W., Bai, L., Zhou, R., Fan, X., Kang, G., Liu, Y., & Zhou, K. (2021). Recent progress on wear‐resistant materials: Designs, properties, and applications. Advanced Science, 8(11), 2003739.
Zhong, J., Qin, W., Wang, X., Medvedovski, E., Szpunar, J. A., & Guan, K. (2019). Mechanism of Texture Formation in Iron Boride Coatings on Low-Carbon Steel. Metallurgical and Materials Transactions A, 50(1), 58–62. https://doi.org/10.1007/s11661-018-5002-8
Zhu, L., Xue, P., Lan, Q., Meng, G., Ren, Y., Yang, Z., Xu, P., & Liu, Z. (2021). Recent research and development status of laser cladding: A review. Optics & Laser Technology, 138, 106915.
Published
2024-07-05
How to Cite
Morales Robles, A. J., Ortiz Domínguez, M., Cardoso Legorreta, E., & Cruz Avilés, A. (2024). Influence of chemical potential on powder pack boriding. Ingenio Y Conciencia Boletín Científico De La Escuela Superior Ciudad Sahagún, 11(22), 28-52. https://doi.org/10.29057/escs.v11i22.12722