An electrical characterization system design

  • Venkata Krishna Karthik Tangirala Escuela Superior de Tepeji del Rio
  • Angélica Hernández Ingeniería Eléctrica, CINVESTAV-IPN
  • Marco Polo Munguia Martín Ingeniería Eléctrica, CINVESTAV-IPN
Keywords: Gas sensing, memristors, conductivity, resistivity, thin films, pellets

Abstract

In this work, the design, of an electrical characterization system is presented to obtain the surface resistivity (ranging from 1Ω to 1 GΩ) or conductivity of different thin films, thick films and pellets in a very precise manner. The surface resistivity changes are measured at different temperatures ranging from room temperature to 300 0C, which allows to test for all organic and inorganic materials. Gas sensitivity (change in surface resistance with respect to gas) of SnO2 pellets are measured; higher sensitivities (~ 25) with faster sensing response (~45 s) for a very low gas concentrations (~ 2 ppm to 2000 ppm) are easily achieved in a cost-effective way by enjoining a basic flow meter with reduced sensing chamber volume (500 mL). The GPIB interface made the data acquisition of the samples for very small-time intervals (~ 50 ms), which resulted in obtaining both static and dynamic sensor characteristic plots. The assembled system in this work is a portable, cost effective and miniaturized instrument which can be utilized for obtaining gas sensing properties as well as the I-V hysteresis curves for testing various samples as memristors

Downloads

Download data is not yet available.

References

1 F. Spain. Ministerio de Sanidad y Consumo., Revista española de salud pública., Ministerio de Sanidad y Consumo, 2005, vol. 79.

2 330 ohms, Cómo funcionan los sensores de gas? | 330ohms, http://blog.330ohms.com/2016/07/11/como-funcionan-los-sensores-de-gas/, (accessed 15 September 2018).

3 N. Jesús, S. Gaibao and N. Jesús, Caracterización eléctrica y estudio de las propiedades de transporte del compuesto Cu 2 ZnSnSe 4 para ser usado como capa absorbente en celdas SOLARES, 2013.

4 M. Julsgaard, L. A. Christensen, P. R. Gibson, R. B. Gearry, J. Fallingborg, C. L. Hvas, B. M. Bibby, N. Uldbjerg, W. R. Connell, O. Rosella, A. Grosen, S. J. Brown, J. Kjeldsen, S. Wildt, L. Svenningsen, M. P. Sparrow, A. Walsh, S. J. Connor, G. Radford-Smith, I. C. Lawrance, J. M. Andrews, K. Ellard and S. J. Bell, Gastroenterology, 2016, 151, 110–119.

5 Q. Zhong, Y. Huang, H. Shen, Y. Chen, H. Chen, T. Huang, E. Y. Zeng and S. Tao, Global estimates of carbon monoxide emissions from 1960 to 2013, 2011.

6 S. D. Chamberlain, A. R. Ingraffea and J. P. Sparks, Environ. Pollut., 2016, 218, 102–110.

7 K. Pilegaard, Phil Trans R Soc B, 2013, 368, 20130126.

8 N. J. Hinton, J. M. Cloy, M. J. Bell, D. R. Chadwick, C. F. E. Topp and R. M. Rees, Geoderma Reg., 2015, 4, 55–65.

9 C. Baker and J. L. Gole, Air Qual. Atmos. Heal., 2016, 9, 411–419.

10 M. Omara, M. R. Sullivan, X. Li, R. Subramanian, A. L. Robinson and A. A. Presto, , DOI:10.1021/acs.est.5b05503.

11 A. Vance, A. J. S. McGonigle, A. Aiuppa, J. L. Stith, K. Turnbull and R. von Glasow, Geophys. Res. Lett., 2010, 37, n/a-n/a.

12 Vladimir Milosavljevic, Electronic gas sensors and detectors – clasification and operating principles, http://www.electronics-base.com/general-description/gas-sensors/171-electronic-gas-sensors-and-detectors-clasification-and-operating-principles, (accessed 15 September 2018).

13 Model 2002 Multimeter User’s Manual Contains Operating and Servicing Information, .
Published
2019-01-05
How to Cite
Tangirala, V. K. K., Hernández, A., & Munguia Martín, M. P. (2019). An electrical characterization system design. TEPEXI Boletín Científico De La Escuela Superior Tepeji Del Río, 6(11), 57-63. https://doi.org/10.29057/estr.v6i11.3822