Síntesis hidrotermal de zeolitas y sus aplicaciones ambientales

Autores/as

  • Marcelino Antonio Zuñiga Estrada Universidad Autónoma del Estado de Hidalgo| Área Académica de Ciencias de la Tierra y Materiales | Mineral de la Reforma, Hidalgo | México https://orcid.org/0000-0003-1040-9670
  • Andrés Pérez Aguilar Universidad Autónoma del Estado de Hidalgo | Área Académica de Ciencias de la Tierra y Materiales | Mineral de la Reforma, Hidalgo | México https://orcid.org/0009-0003-5957-1756
  • Verónica Cecilia López-González Universidad Autónoma del Estado de Hidalgo| Área Académica de Ciencias de la Tierra y Materiales | Mineral de la Reforma, Hidalgo | México https://orcid.org/0009-0002-9979-6223
  • Márius Ramírez Cardona Universidad Autónoma del Estado de Hidalgo | Área Académica de Ciencias de la Tierra y Materiales | Mineral de la Reforma, Hidalgo | México https://orcid.org/0000-0003-1040-9670

DOI:

https://doi.org/10.29057/xahni.v3i5.15024

Palabras clave:

Zeolitas, ambiental, remediación, síntesis hidrotermal

Resumen

Las zeolitas sintéticas son materiales altamente versátiles y eficaces, especialmente en aplicaciones ambientales como el tratamiento de aguas residuales. Gracias a su alta capacidad de adsorción, gran área superficial y selectividad, son útiles para eliminar metales pesados y contaminantes orgánicos como fenoles y antibióticos. Se sintetizan principalmente mediante el método hidrotermal, que permite un control preciso sobre sus propiedades. Aunque este método es eficiente y económico, aún presenta desafíos, como el alto consumo de energía y la emisión de gases peligrosos. Las zeolitas también se han modificado y mejorado, como las zeolitas nanocristalinas, que han demostrado mayor efectividad en procesos de adsorción. Las zeolitas sintéticas continúan siendo una opción prometedora para la remoción de contaminantes, con un gran potencial en el sector ambiental y otras industrias.

Información de Publicación

Metric
Este artículo
Otros artículos
Revisores por pares 
2.4 promedio

Perfiles de revisores  N/D

Declaraciones del autor

Declaraciones del autor
Este artículo
Otros artículos
Disponibilidad de datos 
N/A
16%
Financiamiento externo 
No
32% con financiadores
Intereses conflictivos 
N/D
11%
Metric
Para esta revista
Otras revistas
Artículos aceptados 
39%
33%
Días hasta la publicación 
67
145

Indexado en

Editor y comité editorial
perfiles
Sociedad académica 
N/D
Editora: 
Universidad Autónoma del Estado de Hidalgo

Citas

Auerbach, S. M., Carrado, K. A., y Dutta, P. K. (2004). Handbook of layered materials. CRC press.

Chiang, A. S. T., y Chao, K. J. (2001). Membranes and films of zeolite and zeolite-like materials. Journal of Physics and Chemistry of Solids, 62(9-10), 1899-1910.

Yilmaz, B., y Müller, U. (2009). Catalytic applications of zeolites in chemical industry. Topics in Catalysis, 52, 888-895.

Feng, N. Q., y Peng, G. F. (2005). Applications of natural zeolite to construction and building materials in China. Construction and Building Materials, 19(8), 579-584.

Minachev, K. M., Garanin, V. I., y Isakov, Y. I. (1966). Application of synthetic zeolites (molecular sieves) to catalysis. Russian Chemical Reviews, 35(12), 903.

Malekpour, A., Millani, M. R., y Kheirkhah, M. (2008). Synthesis and characterization of a NaA zeolite membrane and its applications for desalination of radioactive solutions. Desalination, 225(1-3), 199-208.

Fruijtier-Pölloth, C. (2009). The safety of synthetic zeolites used in detergents. Archives of toxicology, 83(1), 23-35.

He, K., Chen, Y., Tang, Z., y Hu, Y. (2016). Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environmental Science and Pollution Research, 23, 2778-2788.

Brinker, C. J., y Scherer, G. W. (2013). Sol-gel science: the physics and chemistry of sol-gel processing. Academic press.

Smit, B., y Maesen, T. L. (2008). Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chemical reviews, 108(10), 4125-4184.

Zhao, Y., Zhang, B., Zhang, X., Wang, J., Liu, J., y Chen, R. (2010). Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions. Journal of Hazardous Materials, 178(1-3), 658-664.

Sillanpaa, M., Bhatnagar, A., 2015. Chapter 7 - NOM removal by adsorption. In:Sillanpãa, M. (Ed.), Natural Organic Matter in Water. Butterworth-Heinemann, pp. 213-238.

Jhung, S.H., Chang, J.S., Hwang, Y.K., Park, S.E., 2004. Crystal morphology control of AFI type molecular sieves with microwave irradiation. J. Mater. Chem. 14, 280–285.

Jhung, S.H., Chang, J.-S., Hwang, J.S., Park, S.E., 2003. Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous Mesoporous Mater. 64, 33–39.

Kruk, M., Jaroniec, M., Sayari, A.J.L., 1997. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267-6273.

Luan, Z., Hartmann, M., Zhao, D., Zhou, W., Kevan, L., 1999. Alumination and ion exchange of mesoporous SBA-15 molecular sieves. Chem. Mater. 11, 1621-1627.

Dong, Y., Niu, X., Zhu, Y., Yuan, F., Fu, H., 2011. One-pot synthesis and characterization of Cu-SBA-16 mesoporous molecular sieves as an excellent catalyst for phenol hydroxylation. Catal. Lett. 141, 242-250.

Moshoeshoe, M., Nadiye-Tabbiruka, M., Obuseng, V.J.A.J.M.S., 2017. A review of the chemistry, structure, properties and applications of zeolites. Am. J. Mater. Sci. 7, 196-221.

Sugano, Y., Sahara, R., Murakami, T., Narushima, T., Iguchi, Y., Ouchi, C., 2005. Hydrothermal synthesis of zeolite A using blast furnace slag. Iron Steel Inst. Jpn. Int. 45, 937-945.

Wajima, T., Yoshizuka, K., Hirai, T., Ikegami, Y., 2008. Synthesis of zeolite X from waste sandstone cake using alkali fusion method. Mater. Trans. 49, 612-618.

Tsujiguchi, M., Kobashi, T., Utsumi, Y., Kakimori, N., Nakahira, A., 2014. Synthesis of zeolite A from aluminoborosilicate glass used in glass substrates of liquid crystal display panels and evaluation of its cation exchange capacity. J. Am. Ceram. Soc. 97, 114-119.

Shoppert, A., Loginova, I., Chaikin, L., Rogozhnikov, D., 2017. Alkali fusion-leaching method for comprehensive processing of fly ash. Knowl. E Mater. Sci. 89-96.

Sangeetha, C., Baskar, P., 2016. Zeolite and its potential uses in agriculture: a critical review. Agric. Rev. 37, 101-108.

Bibby, D., Dale, M., 1985. Synthesis of silica-sodalite from non-aqueous systems. Nature 317, 157-158.

Johnson, E., Arshad, S.E., 2014. Hydrothermally synthesized zeolites based on kaolinite: a review. Appl. Clay Sci. 97, 215-221.

Abdullahi, T., Harun, Z., Othman, M.H.D., 2017. A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process. Adv. Powder Technol. 28, 1827-1840.

Qiang, Z., Shen, X., Guo, M., Cheng, F., Zhang, M., 2019. A simple hydrothermal synthesis of zeolite X from bauxite tailings for highly efficient adsorbing CO, at room temperature. Microporous Mesoporous Mater. 287, 77-84.

Yao, G., Lei, J., Zhang, X., Sun, Z., Zheng, S., 2018. One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite. Materials 11, 906.

Borel, M., Dodin, M., Daou, T.J., Bats, N., Harbuzaru, B., Patarin, J., 2017. SDA-free hydrothermal synthesis of high-silica ultra-nanosized zeolite Y. Crys. Growth Des. 17,1173-1179.

Setthaya, N., Chindaprasirt, P., Pimraksa, K., 2016. Preparation of zeolite nanocrystals via hydrothermal and solvothermal synthesis using rice husk ash and metakaolin. Mater. Sci. Forum Trans. Tech. Publ. 242-247.

Cui, M., Wang, Y., Liu, X., Zhu, J., Sun, J., Lv, N., Meng, C., 2014. Solvothermal conversion of magadiite into zeolite omega in a glycerol-water system. J. Chem. Technol. Biotechnol. 89 (3), 419-424.

Jamil, A.K., Muraza, O., Al-Amer, A.M., 2016. Microwave-assisted solvothermal synthesis of ZSM-22 zeolite with controllable crystal lengths. Particuology 24, 138-141.

Chen, Y., Tang, S., 2019. Solvothermal synthesis of porous hydrangea-like zeolitic imidazole framework-8 (ZIF-8) crystals. J. Solid State Chem. 276, 68-74.

Rabenau, A., 1985. The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. 24, 1026-1040.

Sangeetha, C., Baskar, P., 2016. Zeolite and its potential uses in agriculture: a critical review. Agric. Rev. 37, 101-108.

Byrappa, K., Yoshimura, M., 2012. Handbook of Hydrothermal Technology. William Andrew.

Julbe, A., Farrusseng, D., Jalibert, J.C., Mirodatos, C., Guizard, C., 2000. Characteristics and performance in the oxidative dehydrogenation of propane of MFI and V-MFI zeolite membranes. Catal. Today 56 (1-3), 199-209.

Byrappa, K., Haber, M., 2001. Hydrothermal Technology for Crystal Growth. Noyes Publications.

Wu, H.M., Tu, J.P., Yuan, Y.F., Chen, X.T., Xiang, J.Y., Zhao, X.B., Cao, G.S., 2006. One-step synthesis LiMn2O4 cathode by a hydrothermal method. J. Power Source 161, 1260-1263.

Wang, P., Shen, B., Shen, D., Peng, T., Gao, J., 2007. Synthesis of ZSM-5 zeolite from expanded perlite/kaolin and its catalytic performance for FCC naphtha aromatization. Catal. Commun. 8, 1452-1456.

Yao, G., Lei, J., Zhang, X., Sun, Z., Zheng, S., 2018. One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite. Materials 11, 906.

Tsujiguchi, M., Kobashi, T., Utsumi, Y., Kakimori, N., Nakahira, A., 2014. Synthesis of zeolite A from aluminoborosilicate glass used in glass substrates of liquid crystal display panels and evaluation of its cation exchange capacity. J. Am. Ceram. Soc. 97, 114-119.

Terzano, R., D'Alessandro, C., Spagnuolo, M., Romagnoli, M., Medici, L., 2015. Facile zeolite synthesis from municipal glass and aluminum solid waste. Clean Soil Air Water 43, 133-140.

Rao, K.J., Vaidhyanathan, B., Ganguli, M., Ramakrishnan, P.A., 1999. Synthesis of inorganic solids using microwaves. Chem. Mater. 11 (4), 882-895.

Bukhari, S.S., Behin, J., Kazemian, H., Rohani, S., 2015. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel 140, 250-266.

Chen, Q., Long, L., Liu, X., Jiang, X., Chi, Y., Yan, J., Zhao, X., Kong, L., 2020. Low toxic zeolite fabricated from municipal solid waste incineration fly ash via microwave-as-sisted hydrothermal process with fusion pretreatment. J. Mater. Cycles Waste Manag. 22, 1196-1207.

Jusoh, N., Yeong, Y.E., Mohamad, M., Lau, K.K., Shariff, A.M., 2017. Rapid synthesis of zeolite T via sonochemical-assisted hydrothermal growth method. Ultrason. Sonochem. 34, 273-280.

Petrus, R., Warchot, J.K., 2005. Heavy metal removal by clinoptilolite. An equilibrium study in multicomponent systems. Water Res. 39, 819-830.

Nascimento, M., Soares, P.S.M., Souza, V.P.d., 2009. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method. J. Fuel 88, 1714-1719.

Lee, M.G., Yi, G., Ahn, B.J., Roddick, F., 2000. Conversion of coal fly ash into zeolite and heavy metal removal characteristics of the products. Korean J. Chem. Eng. 17, 325-331.

Ji, X., Zhang, M., Wang, Y., Song, Y., Ke, Y., Wang, Y., 2015. Immobilization of ammonium and phosphate in aqueous solution by zeolites synthesized from fly ashes with different compositions. J. Ind. Eng. Chem. 22, 1-7.

Dyer, A., Amini, S., Enamy, H., El-Naggar, H., Anderson, M., 1993. Cation-exchange in synthetic zeolite L: the exchange of hydronium and ammonium ions by alkali metal and alkaline earth cations. Zeolites 13, 281-290.

Cardoso, A.M., Horn, M.B., Ferret, L.S., Azevedo, C.M.N., Pires, M., 2015. Integrated synthesis of zeolites 4A and Na-Pl using coal fly ash for application in the formulation of detergents and swine wastewater treatment. J. Hazard. Mater. 287, 69-77.

Barrer, R.M., Munday, B.M., 1971. Cation exchange in the synthetic zeolite KF. J. Chem. Soc. A 2914-2921. [55] Kidney Disease Improved Global Outcomes (KDIGO). KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Off. J. Int. Soc. Nephrol. 2013; 3(1): 1–163.

Gibb, N.P., Dynes, J.J., Chang, W., 2017. Synergistic desalination of potash brine-impacted groundwater using a dual ad. rbent. Sci. Total Environ. 593-594, 99-108.

Amin, N.A.S., Akhtar, J., Rai, H.K., 2010. Screening of combined zeolite-ozone system for phenol and COD removal. Chem. Eng. J. 158, 520-527.

Peng, S., Hao, K., Han, F., Tang, Z., Niu, B., Zhang, X., Wang, Z., Hong, S., 2015. Enhanced removal of bisphenol-AF onto chitosan modified zeolite by sodium cholate in aqueous solutions. Carbohydr. Polym. 130, 364-371.

Tri, N.L.M., Thang, P.Q., Van Tan, L., Huong, P.T., Kim, J., Viet, N.M., Phuong, N.M., Al Tahtamouni, T.M., 2020. Removal of phenolic compounds from wastewater by using synthesized Fe-nano zeolite. J. Water Process Eng. 33, 101070.

Ahmedzeki, N.S., Rashid, H.A., Alnaama, A.A., Alhasani, M.H., Abdulhussain, Z., 2013.Removal of 4-nitro-phenol from wastewater using synthetic zeolite and kaolin clay. Korean J. Chem. Eng. 30, 2213-2218.

Xie, J., Meng, W., Wu, D., Zhang, Z., Kong, H., 2012. Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds. J. Hazard. Mater. 231, 57-63.

Descargas

Publicado

2025-07-05

Cómo citar

Zuñiga Estrada, M. A., Pérez Aguilar, A., López-González , V. C. ., & Ramírez Cardona, M. (2025). Síntesis hidrotermal de zeolitas y sus aplicaciones ambientales. XAHNI Boletín Científico De La Escuela Preparatoria No. 6, 3(5), 63–69. https://doi.org/10.29057/xahni.v3i5.15024