Cadaveric Donor Bone Grafts: Current challenges and advancements in bone regeneration
Keywords:
Allograft, Autograft, Bone transplantation, Bone regeneration, Allograft processing, Clinical applications of allograftsAbstract
One of the therapeutic alternatives when bone repair is insufficient involves the use of cadaveric donor bone grafts. These are particularly employed in cases of multifragmentary or complex fractures, lytic lesions, or in conditions with bone resorption, nonunion, or pseudarthrosis that do not respond adequately to initial treatment. Currently, in North America, allografts account for approximately one-third of all bone grafts used. An allograft refers to bone tissue obtained from human cadavers, which is sterilized and transplanted into a recipient. It is available in various forms, including cortical, cancellous, and demineralized bone matrix, among others. The rising incidence of bone-related conditions, such as infections and tumors, combined with the global increase in orthopedic surgeries, significantly contributes to the growing demand for bone grafts and substitutes. Bone grafting procedures have become an integral part of current medical-surgical and dental practice worldwide. The increasing number of these techniques, applications, and procedures underscores the importance of musculoskeletal tissue donation—not only for clinical use but also for research and the development of new biomaterials aimed at enhancing osteoinduction, osteoconduction, and osseointegration, ultimately leading to improved patient outcomes and meeting the growing clinical demand. Cadaveric donor bone grafts offer several advantages, including availability in diverse forms and their capacity to promote bone regeneration. However, their clinical success depends on several factors, such as biocompatibility, processing methods, and host response. This article compiles relevant information on the characteristics, clinical applications, and future perspectives of cadaveric donor bone grafts, providing an updated overview that positions them as both an effective and viable alternative for enhancing bone regeneration and improving clinical outcomes across various pathologies and surgical procedures.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- N/A
- Publisher
- Universidad Autónoma del Estado de Hidalgo
References
[1] Trompet D, Melis S, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone development and repair. J. Bone Miner. Res. 2024; 39(6): 633–54.
[2] Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater. Sci. Eng. C. Mater. Biol. Appl. 2021; 130: 112466.
[3] Fesseha H, Fesseha Y. Bone grafting, its principle and application: A review. Osteol. Rheumatol. Open J. 2020; 1(1): 43-50.
[4] Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019; 23: 9.
[5] Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012 ;8(4):114–24.
[6] Valiyollahpoor-Amiri H, Esmaeilnejad-Ganji SM, Jokar R, Baghianimoghadam B, Kamali-Ahangar S, Bahrami-Feridoni M. Comparison of Outcome of Bone Autograft and Allograft in Union of Long Bone Fractures. Acta Medica Bulgarica. 2021 ;48(2):13–8.
[7] Urist MR. Bone: formation by autoinduction. Science. 1965 Nov 12; 150(3698): 893-9.
[8] Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol. 1998; 16(3): 247-52.
[9] Davies, JE. Understanding peri-implant endosseous healing. J. Dent. Educ. 2003; 67(8), 932-49.
[10] Habibovic P, de Groot K. Osteoinductive biomaterials--properties and relevance in bone repair. J. Tissue Eng. Regen. Med. 2007; 1(1): 25-32.
[11] Calcei JG, Rodeo SA. Orthobiologics for Bone Healing. Clin. Sports Med. 2019 ;38(1):79–95.
[12] Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and
open questions. Periodontol. 2000. 2017; 73(1): 7-21.
[13] Calvo R, Figueroa D, Díaz-Ledezma C, Vaisman A, Figueroa F. Aloinjertos óseos y la función del banco de huesos. Rev. Méd. Chile. 2011; 139(5): 660–6.
[14] Moore MA, Samsell B, McLean J. Allograft Tissue Safety and Technology. In: Mazzocca AD, Lindsay AD, authors. Biologics in
Orthopaedic Surgery. 1st ed. United States: Elsevier Inc; 2019:49-62.
[15] Secretaría de Salud. Ley General de Salud. Título XIV, Capítulo I. Diario Oficial de la Federación. Published on February 7, 1984.
[16] Secretaría de Salud. Ley General de Salud en materia de control sanitario de la disposición de órganos, tejidos y cadáveres de seres humanos. Diario Oficial de la Federación. Published on February 20, 1985.
[17] American Association of Tissue Banks. Standards for Tissue Banking. 15th ed. McLean (VA): AATB; 2020.
[18] Ferraz MP. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. Materials (Basel). 2023; 16(11): 4117.
[19] Centeno-Cerdas C, Somarribas-Brenes F, Vargas-Segura W, Jarquín-Cordero M, Ulloa-Fernández A, Calvo-Castro LA. Procesamiento y esterilización de tejido óseo para su uso terapéutico: bases preclínicas desde una universidad tecnológica. Tec. Marcha. 2024; 37: 215 28.
[20] Ciszyński M, Dominiak S, Dominiak M, Gedrange T, Hadzik J. Allogenic Bone Graft in Dentistry: A Review of Current Trends and Developments. Int. J. Mol. Sci. 2023; 24(23): 16598.
[21] Biograft de México SA de CV. Implantes Estériles de Tejido Músculo Esquelético Humano [catálogo de productos]. México, D.F.: Biograft de México SA de CV; 2020.
[22] Institut Straumann AG. STRAUMANN® ALLOGRAFTS: El dominio de los resultados naturales [brochure]. Basel, Switzerland: Institut Straumann AG; 2023.
[23] Golchin A, Samanipour R, Ranjbarvan P. Bone Allografts: Products and Clinical Applications in Iran. Journal of Research in Applied and Basic Medical Sciences. 2021; 7(2):94-9.
[24]Jefatura de División de Bancos de Piel y Tejidos, Secretaría de Salud. Manual de procedimientos de banco de piel y tejidos. México: Secretaría de Salud; 2023: 1-16.
[25] Chen Q, Wang D, Shang J. Experimental research of different forms of autolyzed antigen-extracted allogeneic bone combined with vascular endothelial growth factor for the repair of bone defects. J. Stomatol. Oral Maxillofac. Surg. 2025; 126(2): 102066.
[26] De Paula AGP, de Lima JD, Bastos TSB, Czaikovski AP, Dos Santos Luz RB, Yuasa BS, et al. Decellularized Extracellular Matrix: The Role of This Complex Biomaterial in Regeneration. ACS Omega. 2023; 8(25): 22256-67.
[27] Golebiowska AA, Intravaia JT, Sathe VM, Kumbar SG, Nukavarapu SP. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioact. Mater. 2023; 32: 98-123.
[28] Álvarez-San Martín R. Bancos de tejidos musculoesqueléticos en México. Parte I. Regulación y organización. Acta Ortopédica Mexicana. 2012; 26(2): 130–6.
[29] Sistema Informático del Registro Nacional de Trasplantes (SIRNT). Estado actual de Receptores, Donación y Trasplantes en México: Informe anual 2024. México; 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Saiko Samantha Lima-Almaraz , Raquel Cariño-Cortés, Brenda Camila Falcón-Ortiz , Gustavo López-Martínez

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.












