Silver dissolution in tailings: evaluation of the Thiourea-Oxalate system

Keywords: Silver, Thiourea-Oxalate, Mine tailings

Abstract

Mining waste, also known as tailings, is waste that is generated during the process of extraction and benefit of minerals, which may contain elements of economic interest, such as silver (Ag). In this study, the effectiveness of the Thiourea (CH4N2S) - Oxalate (C2O42-) system to achieve efficient dissolution of the Ag present is investigated.

The sample was characterized mineralogically by the XRD and SEM-EDS technique, subsequently to know the Ag content, the chemical analysis was carried out using EAA. The parameters evaluated in the dissolution of the precious metal were [CH4N2S] and [Na2C2O4], in a range of 0.3 to 0.5 mol l-1 and 0 to 0.0081 mol l-1, respectively. The reaction was monitored using the EAA technique. As a result, dissolution of 85.98% was obtained by using 0.3 mol l-1 of CH4N2S and 0.0081 mol l-1 of Na2C2O4, after 60 minutes.

Downloads

Download data is not yet available.

References

Ruiz-Sánchez, J. C. (2023). Evaluation of acid mine drainage (AMD) from tailings and their valorization by copper recovery. (191)107979.

Ahamed Ashiq, J. K. (2019). Electronic Waste Management and Treatment Technology. En E. M. Vithanage, Chapter 10 - Hydrometallurgical recovery of metals from e-waste (pp. 225-246). Butterworth-Heinemann.

Atefeh Azizitorghabeh, J. W. (2021). A review of thiocyanate gold leaching – Chemistry, thermodynamics, kinetics and processing. (160)106689.

Aylmore, M. (2016). Chapter 27 - Alternative lixiviants to cyanide for leaching gold ores. Pages 447-484.

Calla-Choque D., Nava-Alonso F., Fuentes-Aceituno J.C. (2016). Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system. Journal of Hazardous Materials, (317), 440–448.

Carrillo, M. D. (2014). Lixiviación con tiourea de dos minerales auroargentíferos santandereanos. Revista colombiana de materiales (5),319–324.

Calla-Choque D., (March 2021). Jarosite dissolution kinetics in the presence of acidic thiourea and oxalate media. (200)105565.

https://doi.org/10.1016/j.jhazmat.2016.05.085

Economía, S. D. (2023). Secretaría de Economía de México.

https://www.gob.mx/se/acciones-y-programas/mineria, (consulta 28 de junio de 2023)

Salinas-Rodríguez E., (2016). Leaching of silver contained in mining tailings, using sodium thiosulfate: A kinetic study. 160, 6-11.

Lapidus G.T., (2020). Acid decomposition and silver leaching with thiourea and oxalate from an industrial jarosite sample. G. Senanayake, Ed. Hydrometallurgy, 192 (105289).

Habashi, F. (2018). Extractive Metallurgy. Quebec City, Canada: Elsevier Inc. All rights reserved.

Ke Li, Y. Z. (2023). Role of foreign ions in the thiourea leaching of gold. Minerals Engineering, 202(108265).

Lei Zhang, X.-y. G.-h.-p. (2022). Improved thiourea leaching of gold with additives from calcine by mechanical activation and its mechanism. Minerals Engineering, 178 (107403).

https://doi.org/10.1016/j.mineng.2022.107403

Rendón-Castrillón L., (2023). Bioleaching Techniques for Sustainable Recovery of Metals from Solid Matrices. Sustainability, MDPI, (15)13,1-32.

Martínez R., (2020). Identificación de sulfuros complejos de plata (Sulfosales) contenidos en un concentrado de Pb, del distrito minero de Zimapán Hgo,. Tópicos de investigación en ciencias de la tierra y materiales, (7)7,19-23.

Moreno Tovar, R., (2009). Neoformación mineralógica en residuos mineros (jales) del distrito minero Zimapán, estado de Hidalgo, México. Minería y Geología, (25) 2, 1-31.

Muñoz-Hernández E. J., Teja-Ruíz A. M. (2023). Estudio preliminar de lixiviación de Polibasita: efecto de la temperatura. PÄDI Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, (10)20, 122-125.

https://doi.org/10.29057/icbi.v10i20.9951

Nava-Alonso, D., (2020). Thiourea determination for the precious metals leaching process by iodate titration. Revista Mexicana de Ingeniería Química (19)1.

DOI: 10.24275/rmiq/IA539

Sitando O., Senanayake G., Dai X., Nikoloski A.N., Breuer P., (2018). A review of factors affecting gold leaching in non-ammoniacal thiosulfate solutions including degradation and in-situ generation of thiosulfate. Hydrometallurgy (178),151-175.

https://doi.org/10.1016/j.hydromet.2018.02.016

Pelin Altinkaya, Z. W. (2020). Leaching and recovery of gold from ore in cyanide-free glycine media. Minerals Engineering.158(106610).

https://doi.org/10.1016/j.mineng.2020.106610

Moreno Tovar R., (2012). Influencia de los minerales de los jales en la bioaccesibilidad de arsénico, plomo, zinc y cadmio en el distrito minero Zimapán, México. Revista internacional de contaminación ambiental, 28(3), 203-218.

Seyed H. B., (2021). Leaching behavior of silver sulfide in the sodium thiosulfate-copper sulfate- sodium metabisulfite system. Minerals Engineering 174(107275).

https://doi.org/10.1016/j.mineng.2021.107275

Xue-yi G., Lei Z., Qing-hua T., Hong Q., (2020). Stepwise extraction of gold and silver from refractory gold concentrate calcine by thiourea. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2020.105330.

Yujie G., (2017). A novel bio-oxidation and two-step thiourea leaching method applied to a refractory gold concentrate. Hydrometallurgy, 171(213-221).

https://doi.org/10.1016/j.hydromet.2017.05.023

Published
2023-12-15
How to Cite
Muñoz-Hernández, E. J., Ruiz-Sánchez , Ángel, Palacios-Beas, E. G., Reyes-Pérez, M., Urbano-Reyes, G., & Juárez-Tapia, J. C. (2023). Silver dissolution in tailings: evaluation of the Thiourea-Oxalate system. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 11(Especial5), 156-160. https://doi.org/10.29057/icbi.v11iEspecial5.11702

Most read articles by the same author(s)

1 2 > >>