Simulation of the inhibitory effect of phenolic compounds on pathogenic bacteria

Keywords: Simulation, Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, Inhibition, Polyphenols

Abstract

Foodborne illnesses caused by contaminated pathogens pose a global threat to public health. Simulations provide valuable insights into population dynamics, interactions, and bacterial adaptations, to have tools to control them without the need to experiment or apply them to reality. This study addresses bacterial growth inhibition through process simulation, focusing on phenolic compounds derived from nejayote, a byproduct of nixtamalization. Foodborne pathogens such as Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium were used, highlighting their prevalence and contamination pathways in the food chain. The antimicrobial potential of phenolic compounds was explored, demonstrating their ability to inhibit bacterial growth in direct proportion to their concentration. The research suggests the viability of nejayote as an antimicrobial agent, emphasizing the importance of investigating residual compounds for biotechnological applications. These findings contribute to understanding underlying mechanisms and pave the way for future research to optimize the practical application of these compounds, solidifying their role in bacterial growth regulation and promoting food safety.

Downloads

Download data is not yet available.

References

Abdulhadi, S. Y., Gergees, R. N., Hasan, G. Q. (2020). Molecular Identification, Antioxidant Efficacy of Phenolic Compounds, and Antimicrobial Activity of Beta-Carotene Isolated from Fruiting Bodies of Suillus sp. Karbala International Journal of Modern Science, 6(4): 364-374. DOI: 10.33640/2405-609X.1966
Atolia, E., Cesar, S., Arjes, H. A., Rajendram, M., Shi, H., Knapp, B. D., Khare, S. (2020). Environmental and Physiological Factors Affecting High-Throughput Measurements of Bacterial Growth. Molecular Biology and Physiology, 11(5): 1-19. DOI: 10.1128/mbio.01378-20
Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3): 529-563. DOI: 10.3934/microbiol.2017.3.529
Bouarab-Chibane, L., Degraeve, P., Ferhout, H., Bouajila, J., Oulahal, N. (2018). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99 (4): 1457-1474. DOI: 10.1002/jsfa.9357
Bouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Degraeve, P., Bordes, C. (2019). Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Frontiers in Microbiology, 18(10): 829. DOI: 10.3389/fmicb.2019.00829
Budiati, T., Suryaningsih, W., Bethiana, T. N. (2022). Antimicrobial of tropical fruit and vegetable waste extract for food-borne pathogenic bacteria. Italian Journal of Food Safety, 11(3): 10510. DOI: 10.4081/ijfs.2022.10510
Capparelli, A., Lagares, A., Parisi, G., Hozbor, D., Melgarejo, A., Bottero, D., Lozano, M. (2017). Catálisis enzimática: fundamentos químicos de la vida (1era ed.). Editorial de la Universidad de La Plata: Buenos Aires, Argentina.
Chen, L., Alali, W. (2018). Recent Discoveries in Human Serious Foodborne Pathogenic Bacteria: Resurgence, Pathogenesis, and Control Strategies. Frontiers in Microbiology, 9(2412): 1-3. DOI: 10.3389/fmicb.2018.02412
Codex Alimentarius. (2011). General principles of food hygiene. Codex CXC 1-1969. Disponible en: https://www.fao.org/fao-who-codexalimentarius/en (consultado el 13 de diciembre de 2023).
de Carvalho, J. C., Goyzueta-Mamani, L. D., Molina-Aulestia, D. T., Magalhães Júnior, A. I., Iwamoto, H., Ambati, R. R., Ravishankar, G. A., Soccol, C. R. (2022). Microbial Astaxanthin Production from Agro-Industrial Wastes-Raw Materials, Processes, and Quality. Fermentation, 8(10): 1-15. DOI: 10.3390/fermentation8100484
De Silvestri, A., Ferrari, E., Gozzi, S., Marchi, F., Foschino, R. (2018). Determination of temperature dependent growth parameters in psychrotrophic pathogen bacteria and tentative use of mean kinetic temperature for the microbiological control of food. Frontiers in Microbiology, 9: 1-12. DOI: 10.3389/fmicb.2018.03023
Díaz-Montes, E., Castro-Muñoz, R. (2022). Analyzing the phenolic enriched fractions from Nixtamalization wastewater (Nejayote) fractionated in a three-step membrane process. Current Research in Food Science, 5: 1-10. DOI: 10.1016/j.crfs.2021.11.012
Díaz-Montes, E., Rodríguez-Romero, V. M., Arzola-Rodríguez, S. I. (2022). Effect of Primary By-Product (Nejayote) of the Nixtamalization on Fungal Growth. Waste and Biomass Valorization, 14(4): 1157-1168. DOI: 10.1007/s12649-022-01932-5
FDA: Food and Drug Administration. (2023). Secondary Direct Food Additives Permitted in Food for Human Consumption. Code of Federal Regulations Title 21, vol. 3. Disponible en: https://www.fda.gov (consultado el 18 de diciembre de 2023).
Fleck, N., Castro de Oliveira, W., Padilha, R. L., Brandelli, A., Sant`Anna, V. (2023). Antimicrobial effect of phenolic-rich jaboticaba peel aqueous extract on Staphylococcus aureus and Escherichia coli. Brazilian Journal of Food Technology, 26: e2022087. DOI: 10.1590/1981-6723.08722
Fung, F., Wang, H.-S., Menon, S. (2018). Food safety in the 21st century. Biomedical Journal, 41: 88-95. DOI: 10.1016/j.bj.2018.03.003
Gonçalves, L. A., Lorenzo, J. M., Trindade, M. A. (2021). Fruit and Agro-Industrial Waste Extracts as Potential Antimicrobials in Meat Products: A Brief Review. Foods, 10(7): 1469. DOI: 10.3390/foods10071469
Kampen, W. H. (2014). Nutritional Requirements in Fermentation Processes. En Fermentation and Biochemical Engineering Handbook: Principles, Process Design, and Equipment: Third Edition (Third Edit). Elsevier Inc. DOI: 10.1016/B978-1-4557-2553-3.00004-0
Li, J., Xie, S., Ahmed, S., Wang, F., Gu, Y., Zhang, C., Chai, X., Wu, Y., Cai, J., Cheng, G. (2017) Antimicrobial Activity and Resistance: Influencing Factors. Front Pharmacol, 13(8): 364. DOI: 10.3389/fphar.2017.00364
Lima, M. C., Paiva de Sousa, C., Fernandez-Prada, C., Harel, J., Dubreuil, J. D., de Souza, E.L. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial Pathogenesis, 130: 258-270. DOI: 10.1016/j.micpath.2019.03.025
Lopina, O. D. (2017). Enzyme Inhibitors and Activators. In M. Şentürk (Ed.), Enzyme Inhibitors and Activators (pp. 243–257). IntechOpen. DOI: 10.5772/67248
Martillanes, S., Rocha-Pimienta, J., Cabrera-Bañegil, M., Martín-Vertedor, D., Delgado-Adámez, J. (2017). Application of Phenolic Compounds for Food Preservation: Food Additive and Active Packaging. En Soto-Hernandez, M., Palma.Tenango, M., Garcia-Mateos, M. R. Phenolic Compounds. IntechOpen. ISBN: 978-953-51-2960-8
Mekonnen, E., Kebede, A., Tafesse, T., Tafesse, M. (2019). Investigation of carbon substrate utilization patterns of three ureolytic bacteria. Biocatalysis and Agricultural Biotechnology, 22: 101429. DOI: 10.1016/j.bcab.2019.101429
Miklasinska-Majdanik, M., Kepa, M., Wojtyczka, R. D., Idzik, D., Wasik, T. J. (2018). Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains. International Journal of Environmental Research and Public Health, 15(10): 2321. DOI: 10.3390/ijerph15102321
Pirt, S. J. (1965). The maintenance requirement of bacteria in growing cultures. Proceedings of the Royal Society of London, 63: 224-231. DOI: 10.1098/rspb.1965.0069
Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3): 482-502. DOI: 10.3934/microbiol.2018.3.482
Rezende Marques, T., Avelar Rodrigues, L. A., Andrade Machado, G. H., Duarte Corrêa, A. (2017). Characterization of phenolic compounds, antioxidant and antibacterial potential the extract of acerola bagasse flour. Acta Scientiarum Technology, 39(2): 143-148. DOI: 10.4025/actascitechnol.v39i2.28410
Santoro, H. C., Skroza, D., Dugandzic, A., Boban, M., Simat, V. (2020). Antimicrobial Activity of Selected Red and White Wines against Escherichia coli: In Vitro Inhibition Using Fish as Food Matrix. Foods, 9(7): 936. DOI: 10.3390/foods9070936
Takó, M., Kerekes, E. B., Zambrano, C., Kotogán, A., Papp, T., Krisch, J., Vágvölgyi, C. (2020). Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents against Food-Contaminating Microorganisms. Antioxidants, 9(2): 165. DOI: 10.3390/antiox9020165
TIA: Tasmania Institute of Agriculture. (2022). ComBase. Growth Model. https://browser.combase.cc/
Vuolo, M. M., Lima, V. S., Maróstica Junior, M. R. (2019). Phenolic Compounds: Structure, Classification, and Antioxidant Power. En Segura Campos, M. R. Bioactive Compounds. Elsevier Inc. ISBN: 978-0-12-814774-0
Published
2024-04-02
How to Cite
Díaz-Montes, E. (2024). Simulation of the inhibitory effect of phenolic compounds on pathogenic bacteria. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 12(24). Retrieved from https://repository.uaeh.edu.mx/revistas/index.php/icbi/article/view/12333