Comparative fundamental theoretical study of perovskites: NaNbO3 and SrTiO3

Keywords: SIESTA, DFT, perovskites, NaNbO3, SrTiO3. GGA, LDA, band structures, density of states

Abstract

In this comparative ab initio theoretical study, the SIESTA® code is used, through the Density Functional Theory (DFT) to understand the structural and electronic properties of the cubic phase in the equilibrium of the geometry of two complex perovskites: NaNbO3 and SrTiO3. Two base pseudopotentials are used: Generalized Gradient Approximation (GGA) by the authors Perdew-Burke-Ernzerhof, and Local Density Approximation (LDA) by Ceperley-Alder. The network parameters obtained for NaNbO3 are a0 = 3,900 and 4,040 Å with a precision of 98.86 and 97.6%. For SrTiO3, network parameters of a0 = 3,969 and 3,811 Å were obtained with a precision of 92.8 and 97.6% respectively for each pseudopotential. It is shown that the behavior of both band structures has a particular indirect electronic transition with non-polarized spin, with a bandwidth of ∼1.28 eV for NaNbO3 and ∼2.0 eV for SrTiO3 with the exchange-correlation potential LDA and an argumentative band structure for the reliable application of these materials in cubic phase for opto-electronic devices.

Downloads

Download data is not yet available.

References

Azam, S., Irfan, M., Abbas, Z., Rani, M., Saleem, T., Younus, A., Akhtar, N., Liaqat, B., Shabbir, M., & Al-Sehemi, A. G. (2019). Electronic structure and optical properties of cubic nanbo3 and tetragonal knbo3 crystals: First principles study. Digest Journal of Nanomaterials and Biostructures, 14(3), 751–760. https://www.researchgate.net/publication/336135528_ELECTRONIC_STRUCTURE_AND_OPTICAL_PROPERTIES_OF_CUBIC_NaNbO3_AND_TETRAGONAL_KNbO_3_CRYSTALS_FIRST_PRINCIPLES_STUDY

Bachi, N. (2017). Propiedades fotoconductoras de monocristales y l´aminas delgadas de SrTiO3 [Universidad Nacional de Tucumán]. https://www.facet.unt.edu.ar/licfisica/wp-content/uploads/sites/57/2019/04/2017-Bachi-Nicolás.pdf

Bowler, D. R. (2018). Building bridges: matching density functional theory with experiment. Contemporary Physics, 59(4), 377–390. https://doi.org/10.1080/00107514.2019.1578079

Capizzi, M., & Frova, A. (1970). Optical Gap of Strontium Titanate (Deviation from Urbach Tail Behavior). Physical Review Letters, 25(18), 1298–1302. https://doi.org/10.1103/PhysRevLett.25.1298

Cardona, M. (1965). Optical properties and band structure of SrTiO3 and BaTiO3. Physical Review, 140(2A), A651–A655. https://doi.org/10.1103/PhysRev.140.A651

Ceperley, D. M., & Alder, B. J. (1980). Ground state of the electron gas by a stochastic method. Physical Review Letters, 45(7), 566–569. https://doi.org/10.1103/PhysRevLett.45.566

Cuervo, A. M. (2012). Propiedades estructurales y electronicas de monocapas hexagonales de Si, Ge, GaN y GaAs. Un estudio ab initio [Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Física]. https://repositorio.unal.edu.co/handle/unal/11509

Echeverri-Arteaga, S. (2019). Interacción radiación-materia mediada por fonones en la electrodinámica cuántica de cavidades. https://repositorio.unal.edu.co/handle/unal/76431

Fritsch, D. (2018). Electronic and optical properties of sodium niobate: A density functional theory study. Advances in Materials Science and Engineering, 2018, 10–12. https://doi.org/10.1155/2018/6416057

Ge, N.-N., Gong, C.-H., Yuan, X.-C., Zeng, H.-Z., & Wei, X.-H. (2018). Effect of Mn doping on electroforming and threshold voltages of bipolar resistive switching in Al/Mn : NiO/ITO. RSC Advances, 8(52), 29499–29504. https://doi.org/10.1039/C8RA04784G

González Olaya, W. L. (2013). Uso de la teoría del funcional densidad (dft) en la caracterización estructural y electrónica de la perovskita triple Sr3CoSb2O9 sintetizada en el laboratorio. https://repositorio.unal.edu.co/handle/unal/21899

Grosso, G. (1988). ELECTRONIC BAND STRUCTURE. In Cryst Semicond Mater and Devices. Warwick. https://warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpagswarwick/ex5/bandstructure/

Gutiérrez Ruiz, M. (2016). Estudio de la naturaleza de las bandas de valencia y conducción de los sólidos cristalinos. https://doi.org/http://hdl.handle.net/10902/9204

Jack, M. A. (2014). QRing – A scalable parallel software tool for quantum transport simulations in carbon nanoring devices based on NEGF formalism and a parallel C ++ / MPI / PETSc algorithm. Center for Nanophase Materials Science, August, 0–9. https://doi.org/10.13140/2.1.2322.1124

Javier Junquera. (2016). Hands-on session. Complete characterization of a material. The case of SrTiO3. https://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Full-STO/Full-STO.html

Jesús Madrigal Melchor y Raúl Alberto Reyes Villagrana. (2013). La física de los semiconductores - Tachas 024 - Es lo Cotidiano. http://www.eslocotidiano.com/articulo/tachas-024/fisica-semiconductores/20131116111246006334.html

Junquera, J. (2016). The eggbox effect : converging the mesh cutoff. https://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Convergence/Eggbox-MgO/Exercise-eggbox-MgO.pdf

Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density Functional Theory of Electronic Structure. The Journal of Physical Chemistry, 100(31), 12974–12980. https://doi.org/10.1021/jp960669l

Kokalj, A. (1999). XCrySDen--a new program for displaying crystalline structures and electron densities. Journal of Molecular Graphics & Modelling, 17(3–4), 176–179, 215–216. https://doi.org/10.1016/s1093-3263(99)00028-5

Lin, X., Bridoux, G., Gourgout, A., Seyfarth, G., Krämer, S., Nardone, M., Fauqué, B., & Behnia, K. (2014). Critical doping for the onset of a two-band superconducting ground state in SrTiO3-δ. Physical Review Letters, 112(20), 207002. https://doi.org/10.1103/PhysRevLett.112.207002

Liu, G., Ji, S., Yin, L., Xu, G., Fei, G., & Ye, C. (2011). Visible-light-driven photocatalysts: (La/Bi + N)-codoped NaNbO 3 by first principles. Journal of Applied Physics, 109(6), 063103. https://doi.org/10.1063/1.3554697

MacHado, R., Sepliarsky, M., & Stachiotti, M. G. (2011). Relative phase stability and lattice dynamics of NaNbO3 from first-principles calculations. Physical Review B - Condensed Matter and Materials Physics, 84(13), 134107. https://doi.org/10.1103/PhysRevB.84.134107

Macutkevic, J., Molak, A., & Banys, J. (2015). Dielectric properties of NaNbO3 ceramics. Ferroelectrics, 479(1), 48–55. https://doi.org/10.1080/00150193.2015.1011916

McKeown Walker, S., De La Torre, A., Bruno, F. Y., Tamai, A., Kim, T. K., Hoesch, M., Shi, M., Bahramy, M. S., King, P. D. C., & Baumberger, F. (2014). Control of a Two-Dimensional Electron Gas on SrTiO3 (111) by Atomic Oxygen. Physical Review Letters, 113(17), 177601. https://doi.org/10.1103/PhysRevLett.113.177601

Meza, U. R., Mendoza, B. S., & Mochán, W. L. (2019). Metamateriales nanoestructurados: avances en el cálculo de sus propiedades ópticas. Mundo Nano. Revista Interdisciplinaria En Nanociencias y Nanotecnología, 13(24), 1e-18e. https://doi.org/10.22201/ceiich.24485691e.2020.25.69611

Mohanty, S. K., Mohanty, H. S., Behera, B., Datta, D. P., Behera, S., & Das, P. R. (2019). Influence of NaNbO3 on the structural, optical and dielectric properties of 0.05(K 0.5 Bi 0.5 TiO3)–0.95(NaNbO3) composites ceramics. Journal of Materials Science: Materials in Electronics, 30(6), 5833–5844. https://doi.org/10.1007/s10854-019-00881-5

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

Morales-García, Á., Valero, R., & Illas, F. (2017). An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations. The Journal of Physical Chemistry C, 121(34), 18862–18866. https://doi.org/10.1021/acs.jpcc.7b07421

Perdew, J. P., Kurth, S., Zupan, A., & Blaha, P. (1999). Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation. Physical Review Letters, 82(12), 2544–2547. https://doi.org/10.1103/PhysRevLett.82.2544

Perdew, J. P., Ruzsinszky, A., Tao, J., Staroverov, V. N., Scuseria, G. E., & Csonka, G. I. (2005). Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. The Journal of Chemical Physics, 123(6), 062201. https://doi.org/10.1063/1.1904565

Prosandeev, S. A. (2005). Comparative analysis of the phonon modes in AgNbO3 and NaNbO3. Physics of the Solid State, 47(11), 2130–2134. https://doi.org/10.1134/1.2131156

Richard J. D. Tilley. (2016). Perovskites: Structure-Property Relationships. https://www.wiley.com/en-us/Perovskites%3A+Structure+Property+Relationships-p-9781118935668

Seeger, K. (2004). Semiconductor Physics Advanced Texts in Physics Springer-Verlag Berlin Heidelberg GmbH. In New York. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-09855-4

Tarun, M. C., Selim, F. A., & McCluskey, M. D. (2013). Persistent photoconductivity in strontium titanate. Physical Review Letters, 111(18), 187403. https://doi.org/10.1103/PhysRevLett.111.187403

Vatsyayan, R., Singh, R., & Paily, R. (2017). Adsorption of CO and NO on Ti-doped ZGNR structures: A DFT study. Proceedings of 2nd International Conference on 2017 Devices for Integrated Circuit, DevIC 2017, 509–513. https://doi.org/10.1109/DEVIC.2017.8074002

Velasco, J. G. (2009). Energías renovables (1st ed.).

Viñas, L. P. (2019). Dispositivos Optoelectrónicos: Tema 3: Semiconductores.

Zekry, A. (2017). How does band gap of a semiconductor change with the lattice constant? Please explain the physical significance. https://www.researchgate.net/post/How_does_band_gap_of_a_semiconductor_change_with_the_lattice_constant_Please_explain_the_physical_significance

Published
2020-12-12
How to Cite
Pedroza-Rojas, B., Lorenzano-Hernández, B. J., Herrera-Carbajal, A. de J., Arteaga-Varela, M., Camacho-González, M. A., Reyes-Valderrama, M. I., & Rodríguez-Lugo, V. (2020). Comparative fundamental theoretical study of perovskites: NaNbO3 and SrTiO3. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 8(Especial), 60-67. https://doi.org/10.29057/icbi.v8iEspecial.6324

Most read articles by the same author(s)

<< < 1 2 3