Commissioning and modeling of a quadrotor: DJI Matrice 100

Keywords: Unmanned aerial vehicle, Mathematical model, Flight simulation

Abstract

Currently the use of unmanned aerial vehicles (UAV) is very recurrent in various applications industrial, commercial, environmental, academic, research , among others. One of the main topics of these vehicles is their correct manipulation/control in the absence of human presence. However, this cannot be achieved without starting up the plant and obtaining more complete mathematical models. This paper obtains a mathematical model of the UAV called Matrice 100 by DJI using well-known methodology found in the literature, and validates it by starting up the plant. This UAV is an experimental platform with carbon fiber frame and four rotors, it has a flight simulator of open architecture for communication/manipulation of the UAV, developed in Android Studio. To obtain the mathematical model, a structural configuration known as {CROSS} is considered and the methodology proposed by Euler-Lagrange is applied to describe the translational and rotational dynamics of the UAV to get an underactuated nonlinear model of order-twelve. To corroborate the proper functioning of the experimental platform and its correspondence with the mathematical model, simulation routines in Simulink-Matlab and the flight simulator provided by the manufacturer are presented, as well as experimental tests. For the above, a classic PD control tuned only to reach a height z in UAV is used (considering only translational dynamics).

Downloads

Download data is not yet available.

References

Ammari, S., 2017. Simulation et commande d?un drone (quadrirotor) en utilisant simulink.

Babu, V. M., Das, K., Kumar, S., 2017. Designing of self tuning pid controller for ar drone quadrotor. In: 2017 18th international conference on advanced robotics (ICAR). IEEE, pp. 167–172.

Burri, M., Oleynikova, H., Achtelik, M. W., Siegwart, R., 2015. Real-time visual-inertial mapping, re-localization and planning onboard mavs in unknown environments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1872–1878.

DJI, 2019a. Descripcion general de la plaforma de lo que es el SDK para la ´plataforma DJI Matrice 100. DJI site.

DJI, 2019b. Descripcion general de la plaforma del simulador de vuelo de DJI. ´https://www.dji.com/mx.simulador/info.

DJI, 2019c. Descripcion general de la plaforma DJI Matrice 100. DJI site. ´

DJI, 2019d. Descripcion general del control de vuelo de la platforma Matrice ´100 de DJI. DJI site.

Gandolfo, D. C., Salinas, L. R., Brandao, A., Toibero, J. M., 2016. Stable ˜path-following control for a quadrotor helicopter considering energy consumption. IEEE Transactions on Control Systems Technology 25 (4), 1423–1430.

Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y., Ai, X., 2017. Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerospace Science and Technology 68, 299–307.

Kiyashko, M. A., Sholmov, A. K., Efremov, A. A., 2017. Quadrotor mathematical and information model analysis. In: 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, pp. 901–904.

Liu, Z., Yuan, C., Zhang, Y., Luo, J., 2016. A learning-based fault tolerant tracking control of an unmanned quadrotor helicopter. Journal of Intelligent & Robotic Systems 84 (1-4), 145–162.

Ma, D., Xia, Y., Li, T., Chang, K., 2016. Active disturbance rejection and predictive control strategy for a quadrotor helicopter. IET Control Theory & Applications 10 (17), 2213–2222.

Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V., 2011. Design, modeling, estimation and control for aerial grasping and manipulation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 2668–2673.

Navabi, M., Mirzaei, H., 2017. Robust optimal adaptive trajectory tracking control of quadrotor helicopter. Latin American Journal of solids and structures 14 (6), 1040–1063.

Popovic, M., Hitz, G., Nieto, J., Sa, I., Siegwart, R., Galceran, E., 2016. Online informative path planning for active classification using uavs. arXiv preprintarXiv:1609.08446.

Sa, I., Corke, P., 2014. Vertical infrastructure inspection using a quadcopter and shared autonomy control. In: Field and service robotics. Springer, pp. 219–232.

Santana, L. V., Brandao, A. S., Sarcinelli-Filho, M., 2016. Navigation and ˜cooperative control using the ar. drone quadrotor. Journal of Intelligent & Robotic Systems 84 (1-4), 327–350.

Santiaguillo-Salinas, J., Rosaldo-Serrano, M., Aranda-Bricaire, E., 2017. Observer-based time-varying backstepping control for parrot?s ar. drone 2.0. IFAC-PapersOnLine 50 (1), 10305–10310.

Shakev, N. G., Ahmed, S. A., Topalov, A. V., Popov, V. L., Shiev, K. B., 2018. Autonomous flight control and precise gestural positioning of a small quadrotor. In: Learning Systems: From Theory to Practice. Springer, pp. 179–197.

Tian, B., Lu, H., Zuo, Z., Zong, Q., Zhang, Y., 2018. Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters. International Journal of Robust and Nonlinear Control 28 (1), 281–295.

Zhang, C., Kovacs, J. M., 2012. The application of small unmanned aerial systems for precision agriculture: a review. Precision agriculture 13 (6), 693–712.

Published
2021-07-05
How to Cite
Maya-Gress, K. F., Villafuerte-Segura , R., Romero-Trejo , H., & Bernal-Reza, M. Ángel. (2021). Commissioning and modeling of a quadrotor: DJI Matrice 100. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(17), 67-75. https://doi.org/10.29057/icbi.v9i17.6462

Most read articles by the same author(s)

<< < 3 4 5 6 7 8